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The bulk-edge correspondence plays a crucial role in topological physics bridging the gap between the
bulk topology and the topological edge states, which recently was extended to topological metamaterials
having a large number of topological boundary states. In this work, we experimentally observe the
k-dependent bulk-edge correspondence in the framework of a manmade sonic semimetal, supporting the
coexistence of multiple topological phases which are separated by boundaries formed by versatile types of
Dirac points. The structure is composed of stacked one-dimensional (1D) extended Su-Schrieffer-Heeger
chains through long-range couplings, in which the topological phases are characterized by k-dependent
winding numbers. Through an elaborately designed methodology for measuring the acoustic pressure
amplitude and phase, we not only derive k-dependent topological winding numbers but also clearly observe
the spatial distribution characteristics of edge states across different phases. Our findings significantly
broaden the understanding of these critical topological phases and open up avenues for the manipulation of
classical waves.
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Introduction—Exploring exotic topological phases
resides at a booming research frontier since the discovery
of topological insulators (TIs) and topological semimetals
(TSMs) [1–3]. Associated with this, one of the most
essential principles is the bulk-edge correspondence
[4,5], which bridges the topological protected boundary
states with the topology of the bulk. Recent developments
in areas such as non-Hermitian TIs [6–13], higher-order
TIs [14–16], and non-Abelian physics [17–19] have
expanded the concept of the bulk-edge correspondence,
providing plenty of unexplored opportunities to unlock the
versatility of topological phases. Therefore, detecting
topological invariants plays a vital role in characterizing
and analyzing a topological system. Another interesting
expansion exists in the form of the increment in the bulk
invariant and the corresponding numbers of boundary
states, which can be traditionally generated through
long-range couplings [20–23]. However, both the probing
of topological phases and the introduction of long-range
couplings meet significant challenges in natural materials.

Thanks to the remarkable possibilities of macroscale
artificial structures, manmade symmetry-manipulation for
classical waves is readily possible in the study of analogous
quantum effects and topological phenomena [24–32].
These customized systems make it easy to fine-tune the
versatile geometrical parameters to investigate and validate
the vast concepts behind TIs [33–37]. Most recently,
variable topological numbers or phases have been realized
by incorporating long-range couplings into the artificial
topological systems in association with multiple topologi-
cal interface states in 1D Su-Schrieffer-Heeger (SSH) chain
and multiple corner states in two-dimensional (2D) second-
order TI [38–41]. Yet, no experimental validation of the
large topological index has been reported for TSM. The
transitions between multiple topological phases and the
rich physics at phase boundaries remain unexplored.
In this work, we discuss a TSM with high winding

number, which sustains a pair of type-II semi-Dirac points
(SDPs) [42–44] as illustrated in Fig. 1(a). Moreover, we
experimentally characterise the associated k-dependent
topological indices in an artificial sonic crystal (SC) to
verify the inherent bulk-edge correspondence. The TSM is
built by stacking the extended 1D SSH chain with long-
range couplings between different sublattices. We demon-
strate that the topological bulk-edge correspondence in this
system can be characterized by the winding number as

*Contact author: zhangzhiwang@nju.edu.cn
†Contact author: chengying@nju.edu.cn
‡Contact author: liuxiaojun@nju.edu.cn
§Contact author: johan.christensen@imdea.org

PHYSICAL REVIEW LETTERS 135, 036602 (2025)

0031-9007=25=135(3)=036602(8) 036602-1 © 2025 American Physical Society

https://orcid.org/0009-0000-8987-5003
https://orcid.org/0000-0002-0287-0224
https://orcid.org/0000-0002-9140-4742
https://orcid.org/0000-0002-7826-9742
https://orcid.org/0000-0002-1604-250X
https://ror.org/01rxvg760
https://ror.org/020mrfq61
https://ror.org/01prrh334
https://ror.org/009s53a61
https://crossmark.crossref.org/dialog/?doi=10.1103/wkwd-cbn2&domain=pdf&date_stamp=2025-07-15
https://doi.org/10.1103/wkwd-cbn2
https://doi.org/10.1103/wkwd-cbn2


shown in Fig. 1(b) instead of the Zak phase in Fig. 1(c),
which is zero in the topologically nontrivial region with
N ¼ 2. Consequently, experimentally measuring the vari-
able winding numbers meets an urgent need. To do so, we
design and fabricate a SC composed of waveguide-coupled
cavities, and obtain the k-dependent winding numbers from
the measured data as outlined in Figs. 1(d) and 1(e)
corresponding to jWj ¼ 1 and jWj ¼ 2, respectively.
Furthermore, we successfully detect the momentum-
resolved topological edge states and study their energy
localization rules in real space, which provide a compre-
hensive characterization of this unique bulk-edge
correspondence.
Tight-binding model—To establish a TSM exhibiting

variable kz-dependent winding numbers, we employ a
feasible tight-binding model (TBM) in Fig. 2. Figure 2(a)
illustrates the lattice construction by stacking the 1D SSH
chain along the z direction, with a and h for the lattice
constants. The sublattices A and B are coupled not only
through the intralayer nearest-neighbor couplings t0 and t1,
but also by the intra- and interlayer third-nearest-neighbor
couplings t2x and t2z respectively. Under the preservation of
chiral symmetry [45], the corresponding BlochHamiltonian
is given by

HðkÞ ¼
�

0 Q

Q† 0

�
; ð1Þ

where Q ¼ t0 þ t1e−ikxa þ ½t2x þ 2t2z cosðkzhÞ�e−ikx2a. By
defining t2 ¼ t2x þ 2t2z cosðkzhÞ, our 2D TSM can be
equivalently represented by a 1D extended SSH model, a
concept referred to as dimensional reduction [46–50].

Applying Fourier transformation to the original 2D system
yieldsmultiple kz-dependent 1D systems, with kz acting as a
distinct quantumnumber. The reduced 1DbulkHamiltonian
is HreducedðkxÞ ¼ dxσx þ dyσy, where σx=y denotes the
Pauli matrices, and dx ¼ t0 þ t1 cos kxaþ t2 cos 2kxa,
dy ¼ t1 sin kxaþ t2 sin 2kxa. The winding number, derived
from the trace of dðkxÞ as kx varies from −π to π, character-
izes this 1D chiral-symmetric system. Figure 2(b) illustrates
the phase diagram, showing the absolute value of the
winding number jWj as a function of t1=t0 and t2=t0. It
reveals three distinct regions defined by specific quantized
topological invariants, which are separated by phase boun-
daries in form of Dirac points or type-II SDPs in 2D TSM.
Inside each region, terminal traces of the vector dðkxÞ on the
ðdx; dyÞ plane are depicted, with red points denoting the
origin. For instance, within the red area, the terminal trace
forms a closed loop encircling the origin twice, indicating a
bulk winding number of jWj ¼ 2. We demonstrate that the
orientation of the loop signifies the sign of the winding
number, but only the absolute valuematters in thiswork. The
opposite sign leads to the distinct rules for the field
distributions of edge states (see Supplemental Material
Sec. I [51]). Figure 2(c) depicts a specific trajectory as
indicated by the green line in Fig. 2(b), showing the
progression while increasing t2=t0 but maintaining t1=t0 ¼
2 constant. Notably, it unveils the bulk gap closure at t2=t0 ¼
1 and −3, consistent with the phase transition criterion of
jt1j ¼ jt0 þ t2j. Because of the impact of kz on the value of
t2, the parameter t2=t0 traces a circular route as kz sweeping
from −π=h to π=h in the phase diagram slice shown in
Fig. 2(c), which is centered at t2x with a radius of 2jt2zj.With
different centers and radii, i.e., different couplings, the
stacked 2D model could span a wide range of topological
phases, encompassing trivial insulators, TIs, and TSMs (see
Supplemental Material Sec. II [51]).
An illustrative example of a TSM with k-dependent

winding numbers is established with t2x ¼ 2 and t2z ¼ 1, of
which the variation of the topological phase exactly
obeys the route shown in Fig. 2(c), passing through two
regions with different winding numbers. From the calcu-
lated band diagram in Fig. 2(d) and the topological winding
numbers in Fig. 2(e), we can clearly observe the topo-
logical phase transition at a pair of type-II SDPs with
ðkx; kzÞ ¼ ð�π=a;�kDÞ. The proposed type-II SDP fea-
tures a linear dispersion along kz direction but a quadratic
relation along kx direction, which forms a crescent shape,
and can be viewed as the merging of three Dirac points (see
Supplemental Material Sec. III [51] and video I). The
calculated winding number for jkzj > kD equals to 1 and
that for jkzj < kD is 2, indicating the presence of topo-
logical edge states with the variable numbers following the
bulk-edge correspondence. To observe it, we employ a
ribbonlike supercell as shown in Fig. 2(f), of which the
projected dispersion relations are plotted in Fig. 2(g). One
pair of the degenerate edge states (ES I) is found within
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FIG. 1. TSM with type-II SDPs. (a) Projected band diagram,
where the blue and red lines represent the topological edge states
with N ¼ 1 and N ¼ 2, respectively, denoting the pair numbers
of the zero-energy states. Inset shows the type-II SDP marked by
red dots. The k-dependent (b) winding number W and (c) Zak
phase. The k-dependent winding numbers of (d) jWj ¼ 1 and
(e) jWj ¼ 2.
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jkzj > kD (labeled by blue lines), and the numbers of the
edge states are doubled within jkzj < kD (ES II labeled by
red lines). Furthermore, Fig. 2(h) illustrates typical eigen-
field distributions of ES I and ES II for kz ¼ −π=h and
kz ¼ 0, respectively. We demonstrate that the eigenfunc-
tions of ES I with jWj ¼ 1 are highly localized at the
outermost sites with exponential decay into bulk, but those
of ES II with jWj ¼ 2 are confined at the first two unit cells.
We also want to emphasize that the maximum winding
number in an extended SSHmodel, in which the long-range
couplings connect the unit cell with its mth nearest
neighbor ones, is m. Simultaneously, the corresponding
zero-energy topological edge states are predominantly
confined within the first m unit cells at each boundary,
and type-II SDPs still persist while increasing m (see
Supplemental Material Sec. IV [51]).
Acoustic realization—Next, we design an acoustic cav-

ity-tube framework to construct the above-studied TBM.
The first-order resonant mode of the sound cavity functions
as the on-site orbital and interconnecting tubes emulate the
coupling interactions. Through meticulously engineering
the length and cross-sectional area of these coupling tubes,
we can attain the desired coupling strength and maintain the
chiral symmetry [55,56] in the system (see Supplemental
Material Sec. V [51]). Figure 3(a) illustrates the assembling
process of the designed SC, and details can be found in End
Matter. The projected dispersions of a ribbonlike supercell

acquired through the finite-element method (FEM) [dots in
Fig. 3(b)] demonstrate great agreement with the outcomes
from the TBM (colored curves). As anticipated, SDPs
appear at kz ¼ �kD and are fixed at f0 ¼ 5720 Hz. As
shown in the inset, the winding number jWj exhibits
nontrivial phases in the gapped momentum space with
distinct values of jWj ¼ 1 for jkzj < kD and jWj ¼ 2 for
jkzj > kD. According to the bulk-edge correspondence, two
types of topological edge stats denoted as ES I and ES II
link the SDPs but with the different numbers of states. To
prove it, Figs. 3(c) and 3(d) present the calculated eigens-
pectra at kz ¼ 0 and kz ¼ π=h, respectively. Notably, one
pair of edge states arises in the band gap at kz ¼ 0 and there
are two pairs of edge states at kz ¼ π=h for comparison due
to the doubling of the winding number. Besides the
different numbers of states, the spatial field distributions
of ES I and ES II also display differences, as evident from
the pressure distributions shown in Figs. 3(e) and 3(f).
One can observe that most of the energy for ES I is
localized at the terminal sites [1 and 40 in Fig. 3(e)], but
sounds for ES II can be also trapped at the neighboring
unit cells adjacent to the terminal ones [sites 1, 3, 38 and 40
in Fig. 3(f)], agreeing well with the TBM predictions.
These unique spatial characteristics provide possibilities for
distinguishing the topological edge states with different
winding numbers in experiments. Analysis on other topo-
logical phases using the proposed acoustic cavity-tube
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FIG. 2. Bulk-edge correspondence in TBM. (a) Schematic of the proposed 2D TSM. The long-range couplings (t2x=t2z) connected
with the central unit cell are plot while others not shown here for simplicity. (b) Topological phase diagram for the reduced 1D system.
Yellow, blue, and red colored regions represent the situations with the winding number of 0, 1, and 2, respectively. (c) A slice of the
phase diagram for t1=t0 ¼ 2 as labeled by the green line in (b). (d) Band diagrams related to kx and kz. The slice with kx ¼ π=a is
highlighted by gray curves where the red globules mark the type-II SDPs. (e) Calculated kz-dependent winding numbers jWj.
(f) Schematic and (g) projected dispersion relations of a supercell which is periodic along z direction but finite along the x axis.
(h) Eigenfunctions of ES I and ES II as labeled in (g).
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framework can be found in Supplemental Material
Sec. VI [51].
Experimental measurements—To validate this unique k-

dependent bulk-edge correspondence, we 3D print a finite
SC as depicted in Fig. 4(a), which consists of 12 layers

along z direction with 22 unit cells in each layer. By
performing 2D Fourier transform on the detected signals
through leveraging the twice-excitation pump-probe
approach (see Supplemental Material Sec. VII [51]), the
bulk band diagrams with different kz slices are achieved as

(b) (c)

(d)

(a)

FIG. 3. Realization of acoustic TSM with kz-dependent winding number. (a) Flow schematic of designing the acoustic TSM through
twisting and stacking waveguide-coupled cavities. (b) Edge-projected dispersions calculated for the semi-infinite SC which is infinite
along z direction but finite along x axis. Inset shows the winding number for different kz. Eigenfrequency spectra for (c) kz ¼ 0 and
(d) kz ¼ π=h. Acoustic eigenfield profiles of (e) one pair of topological edge states with kz ¼ 0 and (f) two pairs of topological edge
states with kz ¼ π=h.
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FIG. 4. Experimentally measuring the kz-dependent winding numbers. (a) Photo of the printed SC and the experimental setup.
(b) Measured band structures (background color map) at different kz while scanning kx together with the TBM results (black curves) for
comparison. (c) Theoretically derived and experimentally measured evolution of d̂x and d̂x with kzh ¼ 0. The corresponding evolution
of the vector d̂ðkxÞ is also shown by the arrows via (d) theory and (e) experiments. (f)–(h) Same as (c)–(e), but for kz ¼ π=h.
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shown by the background colors in Fig. 4(b), showing a
close agreement with the TBM results. The whole band
diagrams in kx − kz plane can be found in Supplemental
Material Sec. VIII [51]. The measured band broadening is
attributed to the inevitable viscous loss in experiments. At
kz ¼ 0, a band gap exists near f0 and becomes smaller
while increasing kz. A SDP appears when kz ¼ kD as a
hallmark feature of the TSM and the parabolic dispersion
along kx can be clearly observed. Further increasing kz
leads to the reopening of the band gap and topological
phase transition occurs. To verify this phase transition, we
experimentally measure the topological invariants, indicat-
ing the distinctive bulk topology of the TSM under different
kz. Utilizing singular value decomposition of the measured
response tensor, which could mitigate the inevitable noise
induced by the measured nontarget eigenstates, we extract
precise wave functions un;k and derive the Bloch matrix
HðkÞ as

HðkÞ ¼ RðkÞ
�
E1ðkÞ 0

0 E2ðkÞ

�
RðkÞT

RðkÞ ¼ ½u1ðkÞ u2ðkÞ�∈Oð2Þ. ð2Þ

Subsequently, for the chosen kz, the normalized dðkxÞ
[d̂ðkxÞ] is extracted from HðkÞ to track its trajectory as kx
spans from −π=a to π=a. Figure 4(c) describes this
trajectory with kz ¼ 0 via both theory (curve) and experi-
ment (dots), presenting perfect consistency. The vector
d̂ðkxÞ completes one cycle around the origin indicating the
winding number of jWj ¼ 1. To make it more transparent,
we plot the theoretical and measured d̂ðkxÞ for each kx in
Figs. 4(d) and 4(e), respectively. While for the case with
kz ¼ π=h in Figs. 4(f)–4(h), the trajectory of d̂ðkxÞ expe-
riences two cycles and thus demonstrates the winding
number of jWj ¼ 2. These measurements provide compel-
ling evidence for the topological phase transition happened
at SDP. Note that our model is characterized by a unique
combination of various topological nontrivial phases, set-
ting it apart from previous TSMs featuring one trivial and
the other nontrivial phases [48,49]. We want to emphasize
that the above-discussed methodology gives rise to uni-
versal applicability and could be extended to diverse
physical systems for precisely detecting their topological
invariants (see Supplemental Material Sec. VII [51]).
Finally, we focus on the experimental measurements of

the topological edge states, of which the number differs for
jkzj > kD and jkzj < kD due to their different winding
numbers. To provide a deeper understanding of this unique
bulk-edge correspondence in experiment, we perform a
pump-probe method while placing a loudspeaker at the
specific edge site of the middle layer (the 6th layer). Then
the pressure fields are recorded from the cavities which are
located at the same sites as the source but in the different
layers along the vertical z direction (see Supplemental

Material Secs. IX and X [51]). Figure 5(a) shows the
measured projected edge dispersions after performing 1D
Fourier transformation with the source placed at site 1 (red
star in the inset) of the 6th layer. The edge states are clearly
visible across the whole momentum space and agree well
with the theoretical outcomes (curves). To illustrate the
spatial characteristics of the edge states, we further analyze
the response signals from all of the cavities. As shown in
Fig. 5(b), we fix the input frequency as f0 ¼ 5720 Hz and
Fourier transform z into kz at each site, showcasing a
dependence on both wave vector and site positions. The
edge states are prominently excited for all kz, as both ES I
and ES II are localized at site 1. Additionally, Fig. 5(c)
provides further verifications through the spatial pressure
distributions by setting kz ¼ 0 (orange) and π=h (green).
For comparison, a similar experimental procedure is
adopted with the source placed at site 3 as labeled in the
inset of Fig. 5(d). From the experimental data, we find that
the peaks for ES I vanish within jkzj < kD, because it is
localized solely at site 1 and thus cannot be well excited
when source is placed at site 3. In contrast, for jkzj > kD,
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FIG. 5. Experimental observations of the kz-dependent topo-
logical edge states. (a) Measured (color map) edge-projected
dispersions along kz when a point source is placed at the site-1
cavity as shown in inset. (b) Measured distributions of the
pressure amplitudes after Fourier transforming the sound fields
at each column of cavities along z direction. The site numbers
have been labeled in Fig. 3(a). (c) Simulated (lines) and
experimentally measured (dots) distributions of the pressure
amplitudes at two specific kz values of 0 and π=h. (d)–(f) Same
as (a)–(c) but the point source is placed at the site-3 cavity of one
layer near the sample center.
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the ES II can be still clearly observed, which could be also
confirmed by Figs. 5(e) and 5(f). These measurements
exhibit excellent agreements with FEM simulations when
the inherent viscous losses are taken into account (see
Supplemental Material Sec. IX [51]).
Conclusions—In conclusion, we have proposed a 2D

TSM which obeys the unique bulk-edge correspondence
characterized by the k-dependent winding numbers. The
modulations on the intra- and interlayer couplings induce
the emergence of the large topological invariant.
Specifically, we build a TSM by stacking the twisted
acoustic SSH chain, which supports a pair of SDPs and
the variation of the topological winding numbers from 1 to
2. Through the precisely designed experiments, we not only
successfully detect such k-dependent topological indices,
but also experimentally observe the spatial distribution
properties of the topological edge states, which establish a
complete and comprehensive understanding of the bulk-
edge correspondence. We demonstrate that the topological
edge states in the proposed TSM, dependent on both real
and reciprocal spaces, may provide potential applications in
guiding, sensing, and splitting for classical waves [57–59].
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[53] P. Dietl, F. Piéchon, and G. Montambaux, New magnetic
field dependence of Landau levels in a graphenelike
structure, Phys. Rev. Lett. 100, 236405 (2008).

[54] W. Wang, Z.-G. Chen, and G. Ma, Synthetic three-dimen-
sionalZ × Z2 topological insulator in an elastic metacrystal,
Phys. Rev. Lett. 127, 214302 (2021).

[55] Z.-G. Chen, L.Wang,G. Zhang, andG.Ma, Chiral symmetry
breaking of tight-binding models in coupled acoustic-cavity
systems, Phys. Rev. Appl. 14, 024023 (2020).

[56] Y. Deng, W. A. Benalcazar, Z.-G. Chen, M. Oudich, G. Ma,
and Y. Jing, Observation of degenerate zero-energy

PHYSICAL REVIEW LETTERS 135, 036602 (2025)

036602-7

https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/nphys3458
https://doi.org/10.1038/nphys3458
https://doi.org/10.1103/PhysRevLett.117.224301
https://doi.org/10.1103/PhysRevLett.117.224301
https://doi.org/10.1038/nphys4275
https://doi.org/10.1038/nphys4275
https://doi.org/10.1038/s41586-018-0367-9
https://doi.org/10.1038/s41586-018-0367-9
https://doi.org/10.1038/s42005-023-01393-9
https://doi.org/10.1038/s42005-023-01393-9
https://doi.org/10.1038/s41467-024-45887-8
https://doi.org/10.1126/science.abf6568
https://doi.org/10.1126/science.aaz7654
https://doi.org/10.1126/science.aaz7654
https://doi.org/10.1038/s41377-023-01126-1
https://doi.org/10.1038/s41377-023-01126-1
https://doi.org/10.1103/PhysRevApplied.19.054028
https://doi.org/10.1103/PhysRevLett.131.157201
https://doi.org/10.1103/PhysRevLett.131.157201
https://doi.org/10.1103/PhysRevB.108.205135
https://doi.org/10.1103/PhysRevLett.132.183802
https://doi.org/10.1103/PhysRevLett.132.183802
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1103/PhysRevB.92.161115
https://doi.org/10.1103/PhysRevX.14.041057
https://doi.org/10.1103/PhysRevX.14.041057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1038/s41563-022-01200-w
https://doi.org/10.1038/s41563-022-01200-w
https://doi.org/10.1038/s41563-021-00933-4
https://doi.org/10.1103/PhysRevLett.127.146601
https://doi.org/10.1103/PhysRevLett.132.186601
https://doi.org/10.1103/PhysRevLett.132.186601
http://link.aps.org/supplemental/10.1103/wkwd-cbn2
http://link.aps.org/supplemental/10.1103/wkwd-cbn2
http://link.aps.org/supplemental/10.1103/wkwd-cbn2
http://link.aps.org/supplemental/10.1103/wkwd-cbn2
http://link.aps.org/supplemental/10.1103/wkwd-cbn2
https://doi.org/10.1103/PhysRevX.9.031010
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevLett.127.214302
https://doi.org/10.1103/PhysRevApplied.14.024023


topological states at disclinations in an acoustic lattice,
Phys. Rev. Lett. 128, 174301 (2022).

[57] W. Zhao, Y. Zheng, C. Lu, Z. Wang, Y.-C. Liu, and S.
Zhang, Landau rainbow induced by artificial gauge fields,
Phys. Rev. Lett. 133, 233801 (2024).

[58] B. Hu, Z. Zhang, H. Zhang, L. Zheng, W. Xiong, Z. Yue, X.
Wang, J. Xu, Y. Cheng, X. Liu et al., Non-Hermitian

topological whispering gallery, Nature (London) 597, 655
(2021).

[59] X. Zhang, F. Zangeneh-Nejad, Z. G. Chen, M. Lu, and J.
Christensen, A second wave of topological phenomena
in photonics and acoustics, Nature (London) 618, 687
(2023).

End Matter

Appendix A: Assembling process of the designed SC—
As shown in Fig. 3(a), the 1D extended SSH chain
along x axis is first twisted towards a double-array chain
to achieve the long-range coupling strength, like t2x
between sites 2 and 5. Then, the structure is stacked
along the z direction to create the TSM and each single
layer is connected by the long-range coupling t2z. The

lattice constants along x and z directions are designated
as a ¼ 27.7 and h ¼ 9.6 mm, respectively. We highlight
that the proposed construction methodology offers
significant design flexibility, enabling the realization of
complex theoretical models characterized by intricate
long-range couplings.
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