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While parity transformation represents a fundamental symmetry operation in physics, its implications remain 
underexplored in metamaterial science. Here, we introduce a framework leveraging parity transformation 
to construct parity-inverted counterparts of arbitrary 3-dimensional meta-atoms, enabling the creation of 
parity-engineered metamaterial slabs. We demonstrate that the synergy between reciprocity and parity 
transformation, distinct from mirror operation, guarantees undistorted wave transmission across exceptional 
bandwidths, independent of structural configuration or meta-atom design specifics. Furthermore, these 
metamaterials exhibit dynamic acoustic mimicry capability, enabling adaptive blending of reflected signatures 
into surrounding environments while preserving transmitted wavefront integrity. Validated through numerical 
simulations and experimental prototypes, this breakthrough offers transformative potential for acoustic 
camouflage applications, particularly for sonar systems. Our findings reveal fundamental implications of 
parity transformation in artificial materials, establishing parity engineering as a paradigm for designing 
ultrabroadband functional materials with unprecedented operational versatility.

Introduction
   Parity transformation, the symmetry operation [  1 ] involv-
ing a change of the sign in all spatial coordinates, i.e., 
﻿
(

x, y, z
)

→

(

−x,−y,−z
)

   , has many profound impacts in phys-
ics. Applying parity transformation to an arbitrary object cre-
ates its unique counterpart as a rotation of its mirror image 
with reversed chirality, as exemplified by a hand and its image 
in the mirror in Fig.  1 A and B. Recently, parity–time (PT) sym-
metry [  2 –  5 ] has been exploited to reveal the existence of excep-
tional points [  6 –  11 ], opening a promising field of non-Hermitian 
physics [  12 ]. However, to date, there has been little discussion 
on the possibility of applying parity transformation alone in 
acoustic metamaterials [  13 –  20 ] and metasurfaces [  21 ,  22 ], which 
have markedly broadened the boundaries of acoustic materials 
[  23 –  42 ] and enabled novel functions such as acoustic cloaks 
and illusions [ 23 ,  24 ,  29 , 42 ] over the past decades.        

   Sonar domes are widely used in air and underwater environ-
ments to house and protect sonars [  43 ,  44 ]. To ensure accurate 
signal acquisition, they are typically made of effectively homoge-
neous materials that support broadband undistorted transmis-
sion. However, this uniformity also retains the reflection signature 
of the protected sonars, making it impossible to acoustically blend 

into surrounding environments. On the other hand, conventional 
digital coding metasurfaces [  45 –  52 ] can alter the reflection sig-
nature, but they typically block or disrupt transmission signals, 
thereby disabling the functionality of the sonar. Overall, it is 
highly desirable to achieve dynamic acoustic camouflages 
[ 42 ] in reflection while keeping the sonar function intact in 
an ultrabroad spectrum. This requires the combination of 
effective homogeneity and inhomogeneity in a single material, 
which has been seldomly discussed.

   In this work, we apply parity transformation to design a class 
of acoustic metamaterials denoted parity metamaterials. Parity 
transformation relates an arbitrary 3-dimensional (3D) meta-
atom with its unique parity-inverted counterpart. They constitute 
a pair of building blocks (Fig.  1 C) for a special metamaterial slab 
called parity metamaterial (Fig.  1 E), which can keep transmis-
sion wavefront undistorted in an extremely broad spectrum, 
while dynamically tuning the wavefront in reflection to mimic 
those from a periodic terrain, a rugged terrain, and a flat terrain, 
etc. These metamaterials thus enable dynamic acoustic mimicry 
(Text S1 and Fig. S1) to blend into the acoustic environment. At 
the same time, ultrabroadband undistorted transmission is guar-
anteed irrespective of the dynamical mimicry, which is extremely 
important for sonar detection. Therefore, this metamaterial offers 
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a way to realize dynamic acoustic camouflage for advanced sonar 
systems, just like octopuses that can adapt their color and form 
to blend into their surroundings while still perceiving the envi-
ronment (Fig.  1 D). Our theory unveils the principle of parity 
engineering in metamaterials and metasurfaces, promising a 
profound impact in multiple disciplines.   

Results

Theory and design of parity metamaterials
   We consider an arbitrary 3D meta-atom and its parity-inverted 
counterpart, as denoted by P1 and P2, respectively. To accord 
with the working wavelength, the basic units of the metamate-
rial are composed of an array of  2 × 2    meta-atoms P1 or P2, as 
depicted in Fig.  1 C. The adjacent basic units are separated by 
hard boundaries to minimize the coupling between them. The 

length and thickness of the array are specified as  A = 60 mm    
and  H = 24 mm   , respectively. To achieve dynamic tunability 
of the parity metamaterials, we designed the meta-atom and 
its parity-inverted counterpart to be rotatable. The magnified 
view of the inner rotor is displayed in the bottom-right inset 
of Fig.  1 E. The curved plate can be rotated to tune the reflection 
phase, and the connection to the shaft is set to be asymmetric 
to remove all symmetry in the metastructure. The detailed 
parameters of the meta-atom can be found in Text S2 and Fig. S2. 
Figure  1 E depicts the schematic diagram of the parity meta-
material slab composed of a selected arrangement of the meta-
atom and its parity-inverted counterpart, which can tune the 
reflection while keeping transmission unaffected, if the system 
is reciprocal.

   The underlying physical principle is described as follows. 
We first consider the scattering properties of this pair of 
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Fig. 1. A parity metamaterial composed of a meta-atom and its parity-inverted counterpart. (A and B) The hand, its mirror image, and its parity-inverted counterpart. The 
mirror image and the parity-inverted counterpart are related by a 180° rotation along the x axis. (C) The 3D meta-atom and its parity-inverted counterpart design related by 
parity transformation. (D) The concept of acoustic mimicry to imitate different terrains, including a flat terrain, a rugged terrain, and a periodic terrain, like an octopus. (E) The 
illustration of a parity metamaterial based on a random distribution of P1 and P2. Bottom right inset provides a magnified picture of the inner rotor. (F to H) Reciprocity and 
parity transformation rigorously prove that the meta-atom and its parity-inverted counterpart have the same transmission but different reflection coefficients.
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metastructures (P1 and P2), assuming that the transmission 
and reflection coefficients of P1 in Fig.  1 F are denoted as t and 
﻿r, respectively. When the system is reciprocal, the reciprocity 
theorem [  53 –  55 ] asserts that the exchange of the incidence and 
transmission channels does not change the transmission coef-
ficient, i.e.,  t� = t   , as shown in Fig.  1 G. On the contrary, the 
reflection coefficient can differ markedly after the interchange, 
i.e.,  r′ ≠ r   . Subsequently, we apply a parity operation to the 
system, as shown in Fig.  1 H. P1 is transformed into its coun-
terpart, i.e., P2, which has the same transmission coefficient as 
P1, i.e.,  t�� = t� = t   . This equivalence is regardless of the details 
of the metastructures, as well as the frequency and the incident 
angle. In reflection, contrarily, we have  r�� = r� ≠ r   ; thus, there 
is a phase difference between r′ and r over a wide spectrum, 
which can modulate the reflection from this metamaterial. 
Moreover, the phenomena here can also be explained by a 
theory based on the transfer matrix method in stratified media 
(Text S3 and Fig. S3).   

Ultrabroadband and wide-angle undistorted 
transmission
   In the following, we present the transmission and reflection 
properties of P1 and P2. Figure  2 A and B illustrates, respectively, 
the calculated transmittance and transmission phase, as well as 
the reflectance and reflection phase of P1 and P2, as functions of 
the frequency. The direction of the incident wave is along the z 
direction. Here, acoustic dissipation is neglected for simplicity, 

but this principle also applies to general dissipated systems. From 
Fig.  2 A, it is seen that the transmittance and transmission phase 
of P1 and P2 are identical over an ultrabroad spectrum ranging 
from 0.1 to 7 kHz (Text S4 and Fig. S4). The reflectance is also 
the same, but there is a substantial difference in the reflection 
phase, as depicted in Fig.  2 B. In particular, the phase differ-
ence, Δφr﻿, reaches the maximum value of 180° at a frequency 
of 5.68 kHz (denoted by a gray vertical line). By rotating P1 and 
P2 simultaneously, the phase difference in reflection can be con-
veniently tuned. Figure  2 C illustrates the reflection phase 
difference between P1 and P2, i.e., Δφr﻿, as a function of the 
rotation angle of the rotor and frequency, which covers the whole 
range of 360° around 5.68 kHz. The black dashed line represents 
the condition of  Δ�r = 180◦   . We emphasize that rotation does 
not change the condition of equal transmittance and  Δ�t = 0◦    
over the whole spectrum from 0.1 to 7 kHz (Text S5 and Fig. S5). 
This condition guarantees that the transmitted acoustic wave-
front is the same as that of the incidence in an ultrabroad spec-
trum, independent of the arrangement of P1 and P2.        

   To demonstrate this unique feature, we consider a parity meta-
material composed of randomly distributed P1 and P2 illuminated 
by an incident plane wave of different frequencies and incident 
angles. The arrangement of P1 and P2 is shown in the bottom-left 
inset of Fig.  1 E. By using finite-element software COMSOL 
Multiphysics, the 3D far-field radiation power patterns in trans-
mission are calculated under normal incidence at 2, 4, and 6 kHz, 
as shown in Fig.  2 D. The direction of transmission (Pt﻿) is the same 
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Fig. 2. Transmission and reflection properties of P1 and P2. (A) Transmittance and transmission phase spectra of P1 and P2. (B) Reflectance and reflection phase spectra 
of P1 and P2. (C) Reflection phase difference between P1 and P2 as a function of the rotation angle and frequency. (D) Simulated 3D far-field radiation power patterns in 
transmission under normal incidence at 2, 4, and 6 kHz. (E) Simulated 3D far-field radiation power patterns in transmission under incident angles of 10°, 30°, and 50° at 4 kHz. 
Each subpanel in (D) and (E) is normalized. (F to G) Simulated near-field distributions of the transmitted acoustic field in the yz plane. Here, the colors indicate the normalized 
pressure of the acoustic field. a.u., arbitrary units.
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as that of the incidence (Pi﻿) for all frequencies. In Fig.  2 E, we plot 
the 3D far-field radiation power patterns in transmission for 
incident angles of 10°, 30°, and 50° at 4 kHz. It is observed that 
the direction of transmission (Pt﻿) aligns consistently with the 
direction of incidence (Pi﻿) for all angles. These effects are further 
verified by the calculated near-field distributions, as shown in 
Fig.  2 F and G, respectively. In other words, such a disordered 
metamaterial functions like an ordered metamaterial in transmis-
sion, ensuring its feasibility in important applications such as 
acoustic detection and sonar technology [ 43 , 44 ,  56 ].   

Parity transformation versus mirror operation
   To elucidate the essential role of parity transformation, we com-
pare it with the mirror operation, i.e., upside-down flip, namely, 
﻿
(

x, y, z
)

→

(

x, y,−z
)

   . When the metastructure exhibits a  Cv
4
    

symmetry in the xy plane, there is no difference between 
﻿
(

x, y, z
)

→

(

−x,−y,−z
)

    and  
(

x, y, z
)

→

(

x, y,−z
)

    [  57 ,  58 ]. 
However, the difference becomes huge when the metastructure 

has no symmetry, which is the case here. Figure  3 A depicts the 
schematic diagrams of P1, P2, and the structure generated by mir-
ror operation, Mz, respectively. It is seen that Mz is different from 
P2. In Fig.  3 B and C, we plot the transmittance and transmission 
phase spectra of P1, P2, and Mz under the illumination of an 
incident angle of 30°, respectively, as shown by the green arrow 
in Fig.  3 A. P1 and P2 have the same transmittance and transmis-
sion phase, as strictly protected by reciprocity and parity trans-
formation. However, Mz and P1 exhibit distinctly different 
transmission phase around 6.9 kHz. A comprehensive discussion 
is available in Text S6 and Fig. S6. The wide-angle transmission 
behaviors of P1, P2, and Mz are shown in Text S7 and Fig. S7.        

   Such a fundamental difference between parity transforma-
tion and mirror operation is further experimentally verified. 
We construct 2 metamaterials with the sequences P1P2P1P2P1P2 
(case I) and P1MzP1MzP1Mz (case II), as illustrated in Fig.  3 D 
and H, respectively. The simulated 3D far-field radiation power 
patterns in transmission for cases I and II under an incident 
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angle of 30° at 6.9 kHz are shown in Fig.  3 E and I, respectively. 
The transmitted wave (Pt﻿) is undistorted in Fig.  3 E but dis-
rupted in Fig.  3 I. Such a distinct difference originates in the 
transmission phase difference between P1 (P2) and Mz, which 
reaches 87° at 6.9 kHz (denoted by a gray vertical dotted line 
in Fig.  3 C). This huge difference is also observed in the calcu-
lated and measured near-field distributions for cases I and II, 
as shown in Fig.  3 F, G, J, and K, respectively. The measured 
regions are marked by the blue dotted boxes in the yz plane, as 
shown in Fig.  3 F and J. The experimental and numerical results 
approximately agree with each other, both confirming that it is 
the parity transformation instead of the mirror operation that 
can preserve the transmission wavefront.   

Dynamic acoustic mimicry
   In the following, we numerically and experimentally demon-
strate the realization of dynamic acoustic mimicry. By rotating 
the rotors of the designed parity metamaterial, it is possible to 
alter the reflection to emulate that from a periodic terrain, a 
rugged terrain, and a flat terrain, while keeping the transmission 
wavefront undistorted (Text S8 and Fig. S8). The insets of Fig. 
 4 A portray the magnified views of the inner rotors of P1 and P2, 
wherein the rotors of both P1 and P2 are simultaneously rotated 
by the same angle, such that P1 and P2 can always be transformed 
into each other via parity transformation. Consequently, P1 and 
P2 always have identical transmittance (Fig. S9) and transmission 
phase (Fig.  4 A), regardless of the rotation angle. On the other 
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hand, the reflection phase difference between P1 and P2 varies 
markedly with the rotation angle. Figure  4 A depicts the calcu-
lated reflection phase of P1 and P2, as well as their difference as 
functions of the rotation angle θ under normal incidence at a 
working frequency of 5.68 kHz. The reflection phase difference 
Δφr﻿ varies from −180° to 180°, while the transmission phase 
difference Δφt﻿ remains  0◦   . This indicates that the rotation angle 
﻿θ offers a freedom to dynamically tune the reflection without 
changing the transmission wavefront.        

   Here, we demonstrate the switching of reflection from 2-beam 
reflection to specular reflection, while maintaining undistorted 
transmission all the time. The parity metamaterial is the same as 
that shown in Fig.  3 D. Figure  4 B and C shows the simulated 3D 
far-field radiation power patterns under normal incidence at 
5.68 kHz for  � = 0◦    and  � = 73◦    (denoted by gray vertical dotted 
lines in Fig.  4 A), respectively. The direction of transmission (Pt﻿) 
is the same as that of the incidence (Pi﻿) for both cases. On the 
other hand, the reflection changes from the case of splitting into 
2 beams (for  � = 0◦   ) to the case of specular reflection ( � = 73◦   ). 
This is because Δφr﻿ changes from 180° to 0° when θ changes 
from 0° to 73°. The switching phenomenon is further verified 
by simulated and measured near-field distributions, which are 
shown in Fig.  4 D to I, respectively. The scanned areas correspond 
to the blue dotted boxes in Fig.  4 D and E. The measured results 
coincide excellently with the numerical results, confirming 
that the transmitted wave (Pt﻿) maintains a plane wavefront for 
the 2 cases. For reflection, the angle of reflection is  �r = 30.2◦    
﻿
{

�r = sin
−1
[

�∕(2A)
]}

    (Text S9) at a rotation angle of  � = 0◦   , as 
shown by the green arrows in Fig.  4 D. The quantitative analysis 
of the transmission and reflection behaviors is shown in Text S10 
and Fig. S11. In addition, the case for  � = 42◦    is shown in 
Text S8 and Fig. S10, displaying the simultaneous existence 
of 3-beam reflection and undistorted transmission. Therefore, 
dynamic acoustic mimicry can be realized using the rotation 
angle θ as an extra degree of freedom in the metastructure design.

   We also demonstrated the cases of diffuse reflection and 
reflection holography (Texts S11 and S12 and Figs. S12 and 
S13). The results again confirm the conclusion: The acoustic 
reflection signatures can be freely altered to mimic the sophis-
ticated acoustic environment, while keeping the transmitted 
wavefront unchanged in an ultrabroad spectrum, which is 
crucial for sonar. This functionality cannot be achieved by 
conventional digital coding metasurfaces [ 45 – 52 ] (Text S13 
and Fig. S14).   

Temporal acoustic camouflage
   The integration of parity metamaterials with sonar systems 
offers the potential for temporal camouflage. This effect is 
vividly demonstrated by comparing the reflection signals of a 
Gaussian pulse incident on a sonar, both without and with a 
parity metamaterial. The pulse is a time-domain Gaussian sig-
nal with a duration of 1 s and a center frequency of 10 kHz. In 
accordance with the working wavelength, the basic units of the 
parity metamaterial are composed of only one meta-atom P1 
or its parity-inverted counterpart P2, as shown in Fig.  5 A. In 
our simulations, the sonar is modeled as an impedance boundary 
with an impedance of 38Z0, where Z0 is the impedance of air. 
Under this condition, the simulated sonar provides approxi-
mately 90% reflection.        

   The parity metamaterial is closely attached to the sonar (just 
like the necessary sonar domes in practical sonar systems). In 

this case, the reflections from the metamaterial and the sonar 
itself both influence the overall reflection. By meticulously 
adjusting the rotation angle θ of the rotors in the parity metama-
terial, as well as the distance d between the metamaterial and the 
sonar, it is possible to achieve destructive interference between 
the reflections from the sonar and those from the parity meta-
material. This results in a substantial reduction of the overall 
signal. The mechanism behind the acoustic camouflage is illus-
trated in Fig.  5 B. The total reflection R can be expressed as

﻿﻿  

where r 1 and  r′
1
    denote the reflection coefficients on the front 

and back interfaces of the parity metamaterial, r 2 is the reflec-
tion coefficient of the sonar, t 1 is the transmission coefficient 
of the parity metamaterial, and  �d    indicates the phase change 
through the air layer. By setting  R = 0   , the overall specular sig-
nal can be eliminated. Under this condition, we only need to 
consider the 0th-order transmission and reflection coefficients 
of the parity metamaterial and sonar. The phase shift can be 
expressed as  �d = kd   , where k is the wave number. For example, 
when the rotation angle of the rotors is  � = 75◦   , the distance 
between the metamaterial and the sonar is calculated as 
﻿d = 5.9 mm   . The details are shown in Text S14 and Fig. S15.

   Figure  5 C shows the snapshots of the incident and reflected 
Gaussian pulse without the parity metamaterial. As expected, 
a strong specular reflection is observed when the pulse directly 
impinges on the sonar. In contrast, when the parity meta-
material covers the sonar, the specular reflection is substan-
tially reduced, and the scatterings in other directions emerge, 
as shown in Fig.  5 D. To quantify the temporal camouflage effect, 
we simulated the reflected signals received at a probe located at 
a certain distance from the sonar. The results, shown in Fig.  5 E, 
demonstrate a marked reduction in the reflected signal inten-
sity when the parity metamaterial is present. Specifically, the 
reflected signal strength is reduced to below 7% of its original 
value, and this value is expected to decrease further at greater 
distances. This effect makes the sonar system more difficult to 
be detected. Simultaneously, the parity metamaterial preserves 
the undistorted ultrabroadband transmission, ensuring the 
effectiveness of sonar detection.    

Conclusion
   We would like to emphasize that the concept of parity metama-
terials is fundamentally different from PT-symmetric metama-
terials. PT-symmetric metamaterials [ 2 – 5 ] are non-Hermitian 
systems with global PT symmetry, while the parity metamaterials 
do not require any global symmetry at all. On the other hand, 
PT-symmetric systems require delicately balanced loss and gain, 
while the functionalities of parity metamaterials are inherently 
robust to loss (Text S15 and Fig. S16) because both the reciprocity 
principle and parity transformation are uninfluenced by loss.

   Parity metamaterials are fundamentally different from previ-
ously reported metamaterials studied in topological acoustics 
[  59 –  63 ]. In topological systems, the wave behavior is governed by 
the bulk band structure, which arises from the periodic arrange-
ment of a single type of unit cell with carefully designed internal 
symmetry and intercell coupling. These systems often exhibit 
edge-localized states, valley vortex fields, or other nontrivial band 
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Fig. 5. Temporal acoustic camouflage via a sonar integrated with a parity metamaterial. (A) Schematic diagram of a sonar integrated with a parity metamaterial. Inset shows 
the design of the parity metamaterial. (B) The mechanism of the acoustic camouflage. (C and D) Snapshots of a Gaussian pulse incident on a sonar without (C) and with 
(D) a parity metamaterial, where Δ t = 1 ms. The left panels of (C) and (D) show the incident pulse, while the middle and right panels display the reflected signals. (E) Simulated 
reflection signals received at the probe, both without and with a parity metamaterial.
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topology effects. In contrast, parity metamaterials proposed here 
are constructed using a pair of meta-atoms, i.e., a meta-atom and 
its unique parity-inverted counterpart. Our design is not con-
strained by lattice periodicity and enables aperiodic arrangements, 
through which the reflection signature can be tailored. This mech-
anism unlocks a new class of wavefront control, wherein broad-
band undistorted transmission is guaranteed irrespective of 
tunable reflection shaping, enabling applications such as camou-
flaged sonar domes.

   On the other hand, asymmetry has been recently adopted 
to achieve exceptional points for unidirectional absorption 
[  64 ]. Here, asymmetry is applied in the design of meta-atoms 
for dynamic acoustic mimicry. The approach of parity meta-
materials generally applies to meta-atoms of any symmetry. 
Compared with symmetric meta-atoms, asymmetric meta-atoms 
can provide many more degrees of freedom for tuning the 
reflection, thereby enabling dynamic acoustic mimicry.

   We should note that parity metamaterials reveal the funda-
mental difference between parity transformation  

(

x, y, z
)

→

    
(

−x,−y,−z
)

    and mirror operation  
(

x, y, z
)

→

(

x, y,−z
)

   , which 
was applied in previous optical metasurface designs [ 57 , 58 ]. 
This fundamental difference is manifested by the important 
advantage that parity metamaterials can be constructed from 
arbitrary building blocks, including ones with chirality and no 
symmetry at all, which is a huge advance in contrast to the 
previous optical designs. This difference also releases a large 
amount of new freedom that enables the dynamical acoustic 
mimicry, which can flexibly simulate the acoustic signatures 
of a periodic terrain, a rugged terrain, and a flat terrain, etc. 
Furthermore, the acoustic camouflage performance is also 
demonstrated in temporal domains.

   In summary, we introduce the fundamental symmetry oper-
ation, parity transformation, to design a new class of metama-
terials denoted as parity metamaterials. These metamaterials 
are constituted by an arbitrary 3D meta-atom and its unique 
parity-inverted counterpart. The combination of parity trans-
formation and reciprocity allows for dynamic acoustic mimicry 
in reflection without distorting the transmitted wavefront across 
a wide spectrum. This approach is universal and applies to all 
types of structures and materials, as long as they are reciprocal. 
The constituent meta-atoms do not necessitate any specific sym-
metry and work robustly with loss. Although the demonstration 
here is conducted using airborne sound, it can also be extended 
to underwater scenarios (Text S16 and Fig. S17). It is also effec-
tive when the thickness of the metamaterial is much larger (Text 
S17 and Fig. S18). Our findings uncover the profound role of 
parity transformation in ultrabroadband wave manipulation, 
establishing parity engineering as a transformative paradigm 
for artificial material design, with implications spanning acous-
tic camouflage, adaptive metasurfaces, and next-generation 
communication systems.   

Methods

Numerical simulations
   The full-wave simulations are performed using the commercial finite 
element software COMSOL Multiphysics. In the calculations, the 
parameters of air are set as  �0 = 1.21 kg∕m3    and ﻿c0 = 343 m∕s   . 
The impedance of air is ﻿Z0 = �0c0 = 415.03 Pa ⋅ s∕m3   . The struc-
tures are fabricated using photopolymer resin, with a mass density 
﻿� = 1, 300 kg∕m3    and speed of sound  c = 716 m∕s   . Acoustic 

impedance is ﻿Z = �c ≈ 9.3 × 105    Pa·s/m. Given that the acoustic 
impedance of air is approximately 415 Pa·s/m, this results in 
an impedance contrast exceeding 2,243×, which justifies the 
treatment of the resin as acoustically rigid. The background 
pressure field is used in Figs.  2  to  4 . The periodic boundary 
condition is set in the x and y directions, and perfectly matched 
layers are adopted in the z direction to reduce the reflection. 
In Fig.  5 , a Gaussian wave is utilized.   

Experimental measurements
   All samples are fabricated with resin using stereolithography 
3D printing techniques (0.2 mm in precision). All the rotors 
are printed separately to facilitate rotational operations during 
the experiment. The rotor angles are manually adjusted using 
a standard protractor (angle ruler). Before each measurement, 
we align the rotor by visually matching the angle between the 
curved plate and a reference line with the aid of a handheld 
protractor. While this method is simple, it allows us to control 
the rotor angle with an estimated accuracy of ±2° to 3°. The 
whole size of the sample is  360 mm × 360 mm × 360 mm   .

   The experimental configuration is depicted in Fig. S19. 
To generate a quasi-plane wave, a speaker array (Five HiVi 
B1S) equipped with a parabolic mirror is meticulously con-
structed. A microphone (GRAS 46BE) is affixed to a movable 
stage to systematically scan the distribution of the acoustic 
field with a step size of 10 mm. To mitigate the influence of 
waves propagating around the specimen, sound-absorbing 
foams are affixed in its vicinity. The 2 measured regions on 
the sides of reflection and transmission in the xz-plane are 
shown as 2 blue rectangular areas in Fig. S19A. Both regions 
are  36 mm × 26 mm    in size and are positioned 2 cm away from 
the sample. The photo of the experimental setup is shown in 
Fig. S19B. The measured reflected field distribution is obtained 
by subtracting the incident field (measured without the sample) 
from the total field (measured with the sample). The experi-
ment is carried out in an anechoic room to minimize reflec-
tion and noise.    
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