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Phonon-mediated superconductivity in magic-strain bilayer graphene
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Extensive investigations on the moiré magic angle have been conducted in twisted bilayer graphene, un-
locking the mystery of unconventional superconductivity and insulating states. In analogy to the magic angle,
here we demonstrate the concept of magic strain in graphene systems by judiciously tailoring mechanical
relaxation (stretch and compression) which is easier to implement in practice. We elucidate the interplay of
strain-induced effects and delve into the resulting unconventional superconductivity or semimetal-insulator
transition in relaxation-strained graphene, going beyond the traditional twisting approach. Our findings reveal
how relaxation strain can trigger superconducting transitions (with an ultraflat band at the Fermi level) or a
semimetal-insulator transition (with a gap opening at the K point of 0.39 eV) in both monolayer and bilayer
graphene. These discoveries open up another branch for correlated phenomena and provide deeper insights into
the underlying physics of superconductors, which positions graphene as a highly tunable platform for different
electronic applications.

DOI: 10.1103/5v5w-8vtn

I. INTRODUCTION

Functional materials are engineered materials designed
with specific functionalities in mind. They play a crucial
role in various technological advancements to harness sound
[1–3], light [4], vibrations [5], heat [6,7], and electronic states
[8,9]. For many years, classical metamaterials have been the
workhorse of the functional materials field. By manipulating
their artificial structure features at the subwavelength scale,
metamaterials achieve an array of exotic properties not found
in natural materials [10]. For instance, metamaterials can bend
light or sound in unusual ways, create invisibility cloaks, or
possess a negative refractive index [11,12].

In recent years, a new class of functional materials has
emerged, called van der Waals (vdW) metamaterials. As
the name suggests, vdW metamaterials are the marriage
of vdW materials and metamaterial design principles. They
create intricate heterostructures by stacking different vdW
materials. These heterostructures can be tailored to exhibit
entirely new properties due to the combined effects of their
individual components [13–15], opening doors to novel func-
tionalities not achievable by classical metamaterials alone.
The vdW metamaterials have shown great potential as tun-
able correlated electron systems, and have demonstrated
various intriguing properties by varying the stacking configu-
ration of low-dimensional material sheets, e.g., graphene and
MXenes [16–20]. For graphene, the emergent heterostruc-
tures have added to them a long list of miraculous properties
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such as the superconducting and insulating state. Compared
to other superconducting materials with intense doping [21],
e.g., copper oxide [22], iron-based [23], and MgB2 super-
conductors [24], graphene has unique advantages of being a
single-atomic lattice structure. This superlattice characteris-
tic expands the possibilities to tune graphene’s conductivity
properties by tailoring its heterostructure using mechanical
deformation/strain. Strain is an effective way for engineer-
ing flat bands that favor the emergence of superconductivity
or other correlated phases [25–33]. Recently, experiments
have demonstrated superconducting states in twisted bi-
layer graphene (TBG) [34]. The superconductivity of twisted
graphene systems is rooted in the moiré modulation of the
interlayer coupling, which is depicted by Dirac models that
flatten the electronic bands at particular angles [35,36]. The
fascinating physics of correlated graphene moiré superlattices,
such as TBG, has generated extensive efforts to uncover the
mysteries of their phase diagrams [37]. As a typical example,
independent-layer behavior and the reduction of the Fermi
velocity are observed for small angles in TBG. Specifically,
when the torsional angle is close to 1.1◦ (magic angle), su-
perconductivity and Mott insulator behavior can be induced
in TBG. In addition, magic angles can also cause some exotic
phenomena in optics and mechanics [38,39]. So far, there has
been an explosion of research conducted on twisting mod-
ulation. However, accurate twisting is laborious and needs
intense efforts during sample fabrication. The influence of in-
plane stain/deformation generated during the twisting process
is also neglected [40–42].

Compared with twisting, relaxation (stretch or compres-
sion), which is widely adopted in mechanics, is easier to
implement and holds the potential for large-scale device appli-
cations. Researchers demonstrate that modulating relaxation
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FIG. 1. Relaxation strain of monolayer graphene with (a) symmetrical deformation (εx = εy = εH) and (b) asymmetrical deformation along
the x and y directions (εx �= εy). Here, the graphene in white (blue) is pristine (deformed), and Lx (Lx1 ) and Ly (Ly1 ) are the half diagonal lengths
of the pristine (deformed) cells, respectively. Diagrams of (c) pristine and (d) deformed bilayer graphene are also depicted.

strain can generate an approximate flat-band state or induce
a band gap in monolayer graphene, similar to those produced
in twisted bilayer configurations. Experiments that engineer
relaxation strain on graphene membranes have reported unex-
pected electronic transport and peculiar features of the local
density of states [43,44]. Although intriguing phenomena
have been predicted, there is a gap in connecting the uncon-
ventional properties to distinct strain behavior. Knowledge
of the strain features that determine the resulting electronic
properties is highly desirable. Currently various strain con-
ditions have been implemented in monolayer graphene, but
the band-gap tunability is relatively confined. For bilayer
graphene, the strain effects are studied all within the frame-
work of twisted conditions [45–47]. We note that using biaxial
relaxation strain on graphene systems (monolayer and bilayer)
to achieve unconventional properties, which is predicted to
have a higher degree of tunability (meanwhile being more
complicated), remains elusive. Consequently, the potential of
relaxation-strained graphene to tailor electronic properties re-
mains untapped.

In this work, we address these issues by developing tight-
binding models that control biaxial strain on graphene sheets.
First, we study monolayer graphene with a symmetrical strain
distribution and demonstrate that relaxation will influence the
Fermi velocity near the K point. Based on this finding, we
adopt a general deformation manner where the graphene is
stretched in one direction and compressed in the perpendicular
direction. This technique allows us to open the band gap
widely (0.39 eV) and generate a semimetal-insulator transi-
tion for monolayer graphene. Then we turn to investigate
Bernal-stacked graphene and reveal the relationship between

interlayer distance and weak van der Waals force for bilayer
graphene systems. By fixing one graphene layer and stretching
another layer with a symmetrical strain rate of 1.9% (magic
strain), we display unambiguously a flat band at the Fermi
level, indicating a superconducting transition. In addition, the
asymmetric strain on bilayer graphene will open the band gap
with small margins (0.0272 eV), much less than the mono-
layer counterpart (0.39 eV).

II. MATERIAL AND METHODS

We construct a tight-binding model (TBM) for monolayer
graphene sheets, based on which we investigate the band
structure considering two types of strain distributions:

(i) Symmetrical strain distribution which retains hexagonal
symmetry and is defined as εH = (a − a0)/a0: The terms a
and a0 denote the lattice parameters before and after deforma-
tion, respectively [Fig. 1(a)].

(ii) Asymmetrical strain distribution along the x (or y)
direction which corresponds to strain parallel to the zigzag
(or armchair) edge of graphene ribbons and is defined as εx =
(Lx1 − Lx )/Lx [or εy = (Ly1 − Ly)/Ly] and εx �= εy: Here, Lx

(Lx1) and Ly (Ly1) are the half diagonal lengths of the pristine
(deformed) cells [Fig. 1(b)].

We first establish the TBM for symmetrical strained mono-
layer graphene only considering on-site and nearest-neighbor
hopping, as shown in Fig. 1(a). The Hamiltonian for mono-
layer graphene can be expressed as

H = −t
∑

R

c†
A(R)[cA(R) + cB(R − a1) + cB(R − a2)]+H.c.,

(1)
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where c†
A(R) and cA(R) are creation (annihilation) operators

for an electron in an atomiclike state of kind A (i.e., three
adjacent carbon atoms form a regular triangle). The terms a1

and a2 are basis vectors for the unit cell, R is the position of
the unit cell, and H.c. stands for the Hermitian conjugate. We
obtain the Hamiltonian for symmetrical strained monolayer
graphene HSMG(k) by

HSMG(k) =
[

0 −t f (k)

−t f ∗(k) 0

]
, (2)

where we have f (k) = ∑3
i=1 eik·d i and d1 = (a1 + a2)(1 +

εH)/3, d2 = (−2a1 + a2)(1 + εH)/3, d3 = (a1 − 2a2)(1 +
εH)/3. After imposing symmetrical strain distributions, the
hopping parameters t with the bond length are expressed as
Vppπ (l ) = t0e−3.37(l/d−1), where d is the carbon-carbon bond
length for undeformed graphene [48,49].

For asymmetrical strained monolayer graphene [Fig. 1(b)],
the Hamiltonian changes its form to

HASMG(k) =
[

0 −(t2 − t1) − t1 f (k)

(−t2 − t1) − t1 f ∗(k) 0

]
,

(3)

where the new added terms t1 = Vppπ (l1) and t2 = Vppπ (l2)
denote the hopping parameters.

We then move to construct TBM of bilayer graphene con-
sidering only a homogeneous interlayer hopping between the
nearest neighbors, as shown in Fig. 1(c). The Hamiltonian can
be written as the sum of the following terms,

H =H1+H2+ 〈1, R, A|H⊥|2, R, B〉
∑

R

c†
1,A(R)c2,B(R)+H.c.,

(4)
where H1 and H2 are the Hamiltonian for each monolayer
graphene, while H⊥ indicates Hamiltonian interlayer coupling
in the second quantized formalism. The Hamiltonian HBLG(k)
of Bernal-stacked bilayer graphene is

HBLG(k) =

⎡
⎢⎢⎢⎣

0 −t f (k) 0 〈1, R, A|H⊥|2, R, B〉
−t f ∗(k) 0 0 0

0 0 0 −t f (k)

〈1, R, A|H⊥|2, R, B〉 0 −t f ∗(k) 0

⎤
⎥⎥⎥⎦. (5)

For bilayer graphene systems with biaxial deformation [shown in Fig. 1(d)], we construct a low-energy continuum model that
consists of three terms: two single-layer Dirac-Hamiltonian terms that account for the isolated graphene sheets, and a tunneling
term that describes hopping between the two layers. Considering only the K points of the three closest neighbors, we can get
Hamiltonian HSBLG(k) for bilayer-strained graphene as

HSBLG(k) =

⎡
⎢⎢⎢⎢⎣

Hk
MG

(
εx
2 ,

εy

2

)
Tqb

Tqtr
Tqt l

T †
qb

Hkb
MG

(− εx
2 ,− εy

2

)
0 0

T †
qtr

0 Hktr
MG

(− εx
2 ,− εy

2

)
0

T †
qt l

0 0 Hkt l
MG

(− εx
2 ,− εx

2

)

⎤
⎥⎥⎥⎥⎦. (6)

Here, HMG is the Hamiltonian for monolayer graphene, i.e.,
HSMG(k) for a symmetrical and HASMG(k) for an asymmetrical
system, and T is the tunneling term for interlayer hopping.
On the basis of the Hamiltonian matrix, we further obtain the
renormalization of Fermi velocity v∗

F,

v∗
F(θ )

vF
= 1 −

(
t⊥(K )

vFh̄|k|Au.c.

)2 1√(
ε2

x + ε2
y

)
/2

, (7)

where Au.c. is the unit cell area, t⊥(K ) = 0.58 eV Å2 de-
notes the interlayer hopping term for Bernal stacked bilayer
graphene, VF is the pristine Fermi velocity, and h̄ is the
Planck constant. Following Eq. (7), Fermi velocity will decay
to zero under small εx and εy, which potentially gener-
ates superconductivity. Details of the TBM are presented
in the Supplemental Material [50] (see also Refs. [51,52]
therein).

III. RESULTS AND DISCUSSION

A. Semimetal-insulator transition in monolayer graphene

To verify the accuracy of the established TBM, we conduct
simulations based on first-principles calculations of density
functional theory (DFT). The results by TBM and DFT sim-
ulations show perfect agreement with each other, as shown
in Fig. 2. In the symmetrical strain conditions (εx = εy �= 0),
we observe that the slope of the band structure decreases
near the K point, which indicates the decrement of Fermi
velocity according to the law VF = 2πE/(h̄k). In addition,
the band gap is observed to be zero, because the symmetrical
strain field retains the geometrical symmetry of hexagonal
lattices. In the asymmetrical strain conditions (εx �= εy �= 0),
the band gap will open near the K and R high-symmetry
points, due to the destruction of geometrical symmetry in
hexagonal lattices, as observed in Figs. 2(e) and 2(f). Such
a band-gap-opening phenomenon indicates that monolayer
graphene generates semimetal-insulator transitions. The par-
tial enlargement of these band structures is presented as insets
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FIG. 2. Semimetal-insulator transition for monolayer graphene. Irreducible Brillouin zones (in yellow) are shown for monolayer graphene
under (a) symmetrical and (b) asymmetrical stretching. Reciprocal lattices (in navy dashed lines) and Brillouin zones (in red dashed
lines) are depicted for clarity. Band structures of monolayer graphene are obtained by TBM (by blue solid lines) and DFT (by red dots)
methods considering (c) pristine, (d) symmetrical strain, and (e), (f) asymmetrical strain, respectively. The zooms show that band gaps
Eg are generated only in asymmetrical strain cases around the K point and R point, indicating semimetal-insulator transitions. (g), (h)
Such band gaps are further plotted as a function of εx and εy, where we use a cross to mark the strain conditions corresponding to (e)
and (f).

in Figs. 2(g) and 2(h) which depicts the general relationship
between the band gap and the strain. Results show that the
band gap will open wodely if monolayer graphene is stretched
in one direction while compressed in another direction, i.e.,
inhomogeneous strain condition εxεy < 0. It is also found
that the band-gap value increases with an increase of ap-
plied strain differences. We get a band gap of 0.39 eV when
the strain condition εx = −10%, εy = 20% is imposed. This
value is much larger than unidirectional stretch or compres-
sion obtained in the literature [48]. In addition, by releasing
homogeneous strain in orthogonal directions (compressive
strain only or tensile strain only, εxεy > 0), we can still ob-
tain a band-gap opening, but smaller than the inhomogeneous
strain conditions. This can be intuitively interpreted from the
fact that inhomogeneous strain conditions will result in a

larger destruction of the geometrical symmetry in hexagonal
lattices.

B. Phonon-mediated superconductivity in bilayer graphene

We then investigate the band structures of Bernal-stacked
bilayer graphene. The influence of interlayer distance is first
studied based on TBM and DFT methods. Results in Figs. 3(a)
and 3(b) show that the valence band and conduction band
will get separated respectively when the interlayer distance is
h = 5 Å. Such a phenomenon is induced by the weak van der
Waals force [53], and this result agrees well with the literature
[49]. We further reveal the dependence of such separation
Ep on the interlayer distance in Fig. 3(c), where Ep is the
separation value of the conduction band at the K point. With
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FIG. 3. Band structures for Bernal-stacked bilayer graphene with different interlayer distances: (a) h = 5 Å, (b) h = 20 Å. In (a), the inset
zoom around the K point shows that the valence band and conduction band are separated from each other due to weak van der Waals forces,
and in (c), such a separation is further plotted as a function of the interlayer distance h. (d) Moiré patterns in symmetrical strained bilayer
graphene (εH = 11.3%), where the red circles denote high-energy AA stacking regions and the black diamond shows the potential periodic
computational domain. (e) Reciprocal lattices and (f) momentum-space diagram for the interlayer hopping for symmetrical strained bilayer
graphene. The first Brillouin zone is depicted by red lines for the pristine state, and equivalent Dirac points (K and K ′) are marked by green
(orange) dots. (g) Three distinct hopping processes in reciprocal space are depicted by qb, qtr , and qt l . The blue dashed line marks a moiré unit
cell, and bm

1 and bm
2 are the basis vectors.

the increment of interlayer distance, the separation becomes
smaller and tends to be negligible when the interlayer distance
is larger than 10 Å. In a subsequent analysis, we consider bi-
layer graphene with an interlayer distance h = 3.45 Å, which
is closer to the interlayer distance of Bernal-stacked graphene
[54]. Specifically, we consider deformed bilayer graphene
with one layer fixed and another layer stretched or compressed
in orthogonal directions (εH = 11.3%), as shown in Fig. 3(d).
The region enclosed by black lines is the unit cell, where am

1
and am

2 are the basis vectors, and qb, qtr , and qt l represent
the momentum difference of the K point between the fixed
layer and the biaxially stretched layer, as shown in Fig. 3(e).
We consider the K points of the three nearest neighbors in
the fixed layer [Fig. 3(f)], where their momentum differences
to the origin exactly meet the momentum conservation law.
Furthermore, the K points are staggered due to a biaxial
stretch, and they constitute a new set of honeycomb lattices,
thus satisfying the requirements by Eq. (6).

We compare the TBM and DFT results for bilayer
graphene with biaxial symmetrical deformation (εx = εy �=
0). As compression can easily induce wrinkling of graphene
sheets in practical senses [55] and affect the electrical
properties, here we only emphasize stretch conditions. An
analysis on the compression conditions is available in the
Supplemental Material [50]. As shown in Fig. 4(a), theo-
retical predictions (by TBM) are in good agreement with
simulation results (by DFT), verifying the effectiveness of

our TBM. Based on the established TBM, we first investigate
the band structures of bilayer graphene with different stretch
conditions. It is found that the curve slope near the K point de-
creases gradually with reduced tensile strain, which indicates
a growing lower Fermi velocity. In Fig. 4(c), we show the band
structure and density of states near the charge neutrality point
calculated for εH = 1.9%. A flat band is observed for the band
structure and a peak value appears for the density of states at
the Fermi level, which indicates that the Fermi velocity of the
electron is zero, i.e., a magic strain in analogy with a magic
angle is obtained. In this magic-strain case, it is difficult for
the electron to hop from the conduction band to the valence
band.

We adopt the McMillan formula [56] to obtain the
Bardeen-Cooper-Schrieffer (BCS) superconductivity critical
temperature as Tc = h̄ ωD

1.45kB
exp(− 1.04 (1+λ)

λ−μ∗
c (1+0.62 λ) ), where λ is a

strong BCS coupling strength and is larger than 1, kB is
the Boltzmann constant, h̄ωD is the Debye frequency, and
μ∗

c is the reduced Coulomb coupling strength. To reveal the
dependence of Tc on the factor λ, we have to consider s-wave
pairing of the bilayer graphene with symmetrical strain. In the
s-wave intrasublattice channel, the local pairing amplitude is
expressed as [57]

�
(s)
l (r) = 〈

	α1 (r)	β2 (r)
〉 = −〈

	−α2 (r)	β1 (r)
〉
. (8)

Here, αl or βl denote different sublattices in different layers l
(1 or 2). We assume that the pair amplitude has moiré period-
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FIG. 4. Superconductivity in magic-strain bilayer graphene. Band structures of symmetrical strained bilayer graphene are shown for (a)
εH = 11.3%, (b) εH = 2.5%, (c) εH = 1.9%, (d) εH = 1.6%, and (e) εH = 1.3%. The inset zoom shows no band gap around the K point, and
the Fermi velocity VF = 2πE/(h̄k) decreases with inclined stretching strains, as the curve slopes around the K point decrease in the range
εH > 1.9%. For the strain condition εH = 1.9% in (c), a flat band is observed and a peak value appears at the Fermi level, which demonstrates
potential superconductivity. E1 and E2 are the separation values at the M and � points, respectively, and they are plotted as a function of strain
εH in (f). The band gap first gradually decays to zero at εH = 1.9%, then increases beyond this critical value.

icity, and then we can obtain �
(s)
l (r) = ∑

b eib·r�(s)
b,l . Here, b

is the moiré reciprocal lattice vector of undeformed graphene
and follows

�
(s)
b,l =

∑
bl

ξ
l1l2
b1b2

�
(s)
b,l ,

ξ
l1l2
b1b2

= 2g0

A

∑
q,n1,n2

(
1 − nF

[
ιn1 (q)

] − nF
[
ιn2 (q)

]
ιn1 (q) + ιn2 (q) − 2μ

× [〈
un1 (q)

∣∣un2 (q)
〉
b1,l1

]∗〈
un1 (q)

∣∣un2 (q)
〉
b2,l2

)
, (9)

where A is the sample area, ξ is the pair susceptibility, |un〉 is
the wave function, and gn (n = 0, 1, 2) is the attractive interac-
tion strength whose approximate value g̃0 = g0 − √

3Ua2
0/4

is used to evaluate λ as λ = exp(g̃0/g0). Here, U is the on-site
repulsion on the honeycomb lattice of each graphene layer and
we have the relation g0 = g1 + g2, where g1 and g2 are taken
as 52 and 69 MeV nm2, respectively [58–60]. The overlap
function 〈· · · 〉b,l is the layer-resolved matrix element of the
plane-wave operator exp(ib · r). Note that T̂ symmetry has
been employed in Eq. (9).

The critical temperature Tc is reached when the largest
eigenvalue of ξ is equal to 1. In Fig. 5, we calculate Tc for
εH = 1.9% including b up to the third moiré reciprocal lattice
vector shell. The largest value of Tc, which exceeds 10 K near
the magic strain, can be understood by examining the uniform

susceptibility, which has the standard form g0
∫

dιD(ι)[1 −
2nF (ι)]/[2(ι − μ)]. Here, D(ι) is the density of states per
spin valley, nF (ι) is the Fermi-Dirac occupation function, μ

is the chemical potential, and ι is the corresponding energy.
Depending on the exact values of λ, the s-wave intrasublattice
channel can lead to superconductivity instability. Note that
we did not fulfill the tough task of exactly calculating λ and
Tc for our system, but made estimations of Tc on typical
λ instead. We aim to demonstrate that the high density of
states at the Fermi level will induce a strong phonon-electron
coupling which can cause superconductivity. Such estimations
are enough for a proof-of-concept demonstration. See more
details in the Supplemental Material [50]. As a quantitative
illustration, we present the relationship between the band gap
at � and M points in Fig. 4(f). It is observed that only under
the magic strain εH = 1.9%, the D value (that refers to the
difference between E1 and E2) approaches zero, as verified by
Fig. 4(c).

We further investigate the bilayer graphene system with
biaxial asymmetrical strains (εx �= εy). It is found that the
band gaps are open only under asymmetrical strain conditions
and are closed if symmetrical strains are imposed, as shown
in Figs. 6(a)–6(e). The density of states is shown in the right
panel of Fig. 6(c), where neither a peak value nor band gap
are observed. In Fig. 6(f) we show that the band-gap value
increases with an increased D value of tensile strain in the
x and y directions, as a result of the increased destruction
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FIG. 5. Critical temperature Tc in the s wave as a function of (a) chemical potential μ and (b) reduced attractive interaction strength g0.
(c) Superconducting gap E3 as a function of Tc. Here, E3 = 1.76kBTc.

of the geometrical symmetry. In the case where εx = −0.15
and εy = 0.15, the value of the band gap is observed to be
0.0272 eV, which is much smaller than its strained monolayer
graphene counterpart. Such findings indicate that monolayer
graphene is much easier to generate a semimetal-insulator
transition than bilayer graphene when relaxation strains are
imposed. In addition, the band-gap value exhibits different
dependency behaviors on εx and εy, which is induced by the
chiral properties of graphene.

IV. CONCLUSION

Summarizing, we have shown that relaxation-strained
graphene has the potential to be a superconductor or insulator.
First, asymmetrical strain distribution will result in the band-
gap opening of monolayer graphene, which indicates that
a semimetal-insulator transition is generated. If we impose
different types of strain on monolayer graphene (compressive
strain in one direction and tensile strain in another direction,
εxεy < 0), the band gap will open largely due to the severe

FIG. 6. Band structure for asymmetrical strained bilayer graphene: (a) εx = 0.11, (b) εx = 0.09, (c) εx = 0.08, (d) εx = 0.07, and (e)
εx = 0.05, all obtained from TBM. The inset zooms around the K point show band gaps that indicate semimetal-insulator transitions. (f) Such
band gaps are plotted as functions of εx and εy. The band gap increases with an increasing D value of εx and εy.
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destruction of the geometrical symmetry in hexagonal lattices.
By contrast, if the same types of strain are applied (compres-
sion or stretch in both directions, εxεy > 0), the band gap of
monolayer graphene is small. In extreme conditions, if the
stretch or compression rates in two directions are identical
(εx = εy), the band gap will vanish, and also the curve slope
near the K point will be reduced relative to pristine graphene,
which indicates that stretch or compression will reduce the
Fermi velocity. Following these findings, we compress mono-
layer graphene by 10% in one direction and stretch it by
different rates in another direction. It is found that the band-
gap value increases with the increase of strain differences.
Specifically, the band gap can be as large as 0.39 eV under
the condition that εx = −10%, εy = 20%. Second, a small
interlayer distance will induce separation of the conduction
band and valence band from each other due to weak van
der Waals forces, and such a separation phenomenon can be
eliminated if the interlayer distance is larger than 10 Å. Lastly,
under the condition that one graphene layer is fixed while
another layer is biaxially stretched (or compressed), the Fermi
velocity will decrease with decreasing tensile strains. When
the symmetrical strain is at the magic strain 1.9%, a flat band
is generated which indicates that the bilayer graphene turns
out to be a superconductor below the critical temperature.
By contrast, biaxially asymmetrical stretched (or compressed)
conditions will generate a band-gap opening which indicates
semimetal-insulator transitions. Generally, we pave an av-
enue to achieve graphene superconducting or insulating states
by tailoring biaxial strains. Compared with the widely used
twisted systems, the relaxation strain is easier to implement in
practice and adds more flexibility to obtain exotic electronic
properties by strain engineering.

V. THEORY AND CALCULATION

A. Theoretical model

Considering the situation where one graphene layer is
fixed and another layer is stretched in orthogonal directions,
the Hamiltonian will consist of two single-layer Dirac-
Hamiltonian terms and a tunneling term. In this section, we
present the process to simplify the tunneling term. The matrix
element for the tunneling term based on the continuum model
is

T α,β

k,k′ = 〈	k,α|H⊥
∣∣	ε

k′,β

〉
. (10)

Here, the tunneling Hamiltonian H⊥ describes a process dur-
ing which an electron with momentum k′ = Mk in the fixed
layer hops to the momentum state k in the stretched layer. The
left and right vectors are Bloch wave functions

|ψk,α〉 = 1√
N1N2

∑
n1,n2

eik·(Rn1 ,n2 +δα )
∣∣Rn1,n2 + δα, α

〉
,

∣∣ψε
k′,β

〉 = 1√
N1N2

∑
n′

1,n
′
2

e
ik′ ·(Rε

n′
1 ,n′

2
+δε

β )∣∣Rε
n′

1,n
′
2
+ δε

β, β
〉
. (11)

where the vectors in the deformed layer have all taken into
account the tensile strain, and they are set as α = A, δα = 0
and α = B, δα = δ. Substituting Eq. (11) into Eq. (10), we can

obtain

T α,β

K+q1,Kε+qε
2
= 1

N1N2

∑
n1,n2

∑
n′

1,n
′
2

e−i(K+q1 )·(Rn1,n2 +δα )

×e
i(Kε+qε

2 )·(Rε

n′
1 ,n′

2
+δε

β )

×〈
Rn1,n2 + δα, α

∣∣H⊥
∣∣Rε

n′
1,n

′
2
+ δε

β, β
〉
.

We define the last term as a transition matrix element,〈
Rn1,n2 + δα, α

∣∣H⊥
∣∣Rε

n′
1,n

′
2
+ δε

β, β
〉

= t⊥
(
Rn1,n2 + δα − Rε

n′
1,n

′
2
− δε

β

)
, (12)

and use a Fourier transform for simplification,

T α,β

K+q1,Kε+qε
2
= 1

(N1N2)2

∑
n1,n2

∑
n′

1,n
′
2

∑
k

ei[k−(K+q1 )]·Rn1,n2

×e
i[(Kε+qε

2 )−k]·Rε

n′
1 ,n′

2

×ei[k−(K+q1 )]·δα+τ×e
i[(Kε+qε

2 )−k]·(δε
β

−δ+τ ) t⊥ (K )
Au.c. . (13)

We then define reciprocal lattice vectors to simplify
Eq. (13), and transform its form from real space to reciprocal
space:

T α,β

K+q1,Kε+qε
2
=

∑
k,l,m,n

t⊥(K + q1 + Gk,l )

Au.c.

× ei[Gk,l ·δα−Gm,n·(δε
β−δ)−Gε

m,n·τ]

× δK+q1+Gk,l ,Kε+qε
2+Gε

m,n
. (14)

Here, G is summed over reciprocal lattice vectors. The main
contribution sum in the formula T α,β

K+q1,Kε+qε
2

originates from
Gm,n, bε

2, and −bε
1, hence K + Gε

m,n correspond to three K
points. In this manner, q1 and qε

2, which are close to K and
Kε, can satisfy the momentum conservation law. Substituting
the value Gm,n into the above equations, we then obtain

T α,β

K+q1,Kε+qε
2
= t⊥(K )

Au.c.

[
δK+q1,Kε+qε

2
+ ei[b2·(δα−δε

β+δ)−bε
2·τ]

×δK+q1+b2,Kε+qε
2+bε

2

+e−i[b1·(δα−δε
β+δ)−bε

1·τ ]δK+q1−b1,Kε+qε
2−bε

1

]
. (15)

Here, all four possible degrees of freedom for the sublattice
are {α, β} = {A, B}, δA = 0, δB = δ. Then we can write the
transition matrix in a two-order form,

T =
[

T A,A T A,B

T B,A T B,B

]
. (16)

Thus we can obtain the simplified tunneling term that de-
scribes interlayer hopping as

T α,β

K+q1,Kε+qε
2
= Tqb

δqε
2−q1,qb

+ Tqtr
δqε

2−q1,qtr
+ Tqt l

δqε
2−q1,qt l

,

(17)
where δ is a vector connecting the two atoms in the unit cell,
and α and β are the sublattice numbers for the fixed layer and
stretched layer, respectively. The transition matrices are given
by

Tqb
= t⊥(K )

Au.c.

[
1 1
1 1

]
,
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Tqtr
= t⊥(K )

Au.c.
e−bm

2 ·τ
[

e−iθ 1
eiθ e−iθ

]
,

Tqt l
= t⊥(K )

Au.c.
e−bm

1 ·τ
[

eiθ 1
e−iθ eiθ

]
,

where τ is a translation vector that is almost zero for a small
stretch factor, and bm

1 and bm
2 are basis vectors for reciprocal

lattices shown in Fig. 3(e). Details on the establishing process
of the TBM for different graphene systems are provided in the
Supplemental Material [50].

B. Density functional theory calculation

All DFT calculations are conducted using the Vienna ab
initio simulation package (VASP). The generalized gradient
approximation (GGA) and Perdew-Burke-Ernzerhof (PBE)
function are employed for the exchange-correlation functions.
Additionally, the projector augmented-wave (PAW) method
is utilized to describe the electron interactions. The van
der Waals interactions are accounted for using the DFT-D2
method. The truncation energy of plane waves is set to be
550 eV. Structural optimization is considered complete when
the force on each atom is less than 0.01 eV/Å. During the pro-
cess of structural relaxation, a 5 × 5 × 1 K-point mesh, based
on the Monkhorst-Pack scheme, is employed for geometrical
optimization. Similarly, a 15 × 15 × 1 K-point mesh is used
for electronic structure calculations. Different K-point paths

are selected based on the specific graphene models under
investigation [50].
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K. Watanabe, T. Taniguchi, L. Covaci, F. M. Peeters, A. K.
Geim et al., Evidence of flat bands and correlated states
in buckled graphene superlattices, Nature (London) 584, 215
(2020).

[31] Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R.
Wu, H. Ma, B. Zhao et al., Efficient strain modulation of 2D
materials via polymer encapsulation, Nat. Commun. 11, 1151
(2020).

[32] S. Yang, Y. Chen, and C. Jiang, Strain engineering of two-
dimensional materials: Methods, properties, and applications,
InfoMat 3, 397 (2021).

[33] M. T. Mahmud, D. Zhai, and N. Sandler, Topological flat bands
in strained graphene: Substrate engineering and optical control,
Nano Lett. 23, 7725 (2023).

[34] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[35] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[36] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
magic angles in twisted bilayer graphene, Phys. Rev. Lett. 122,
106405 (2019).

[37] C. Chen, W. Tang, X. Chen, Z. Kang, S. Ding, K. Scott, S.
Wang, Z. Li, J. P. Ruff, M. Hashimoto et al., Anomalous ex-
citonic phase diagram in band-gap-tuned Ta2Ni(Se,S)5, Nat.
Commun. 14, 7512 (2023).

[38] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y.
Mazor, Q. Zhang, Q. Bao et al., Topological polaritons and
photonic magic angles in twisted α-MoO3 bilayers, Nature
(London) 582, 209 (2020).

[39] L. A. Gonzalez-Arraga, J. L. Lado, F. Guinea, and P. San-Jose,
Electrically controllable magnetism in twisted bilayer graphene,
Phys. Rev. Lett. 119, 107201 (2017).

[40] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable strongly coupled superconductivity in
magic-angle twisted trilayer graphene, Nature (London) 590,
249 (2021).

[41] Q. Ji, Z. Xue, Z. Zhang, Z. Cui, M. Kadic, and C. Wang,
Interlayer torsional sliding and strain localization in bilayer
graphene, Proc. R. Soc. A 479, 20220833 (2023).

[42] V. Morovati, Z. Xue, K. M. Liechti, and R. Huang, Interlayer
coupling and strain localization in small-twist-angle graphene
flakes, Extreme Mech. Lett. 55, 101829 (2022).

[43] R. Banerjee, V.-H. Nguyen, T. Granzier-Nakajima, L. Pabbi, A.
Lherbier, A. R. Binion, J.-C. Charlier, M. Terrones, and E. W.
Hudson, Strain modulated superlattices in graphene, Nano Lett.
20, 3113 (2020).

[44] B. S. Jessen, L. Gammelgaard, M. R. Thomsen, D. M.
Mackenzie, J. D. Thomsen, J. M. Caridad, E. Duegaard, K.
Watanabe, T. Taniguchi, T. J. Booth et al., Lithographic band
structure engineering of graphene, Nat. Nanotechnol. 14, 340
(2019).

[45] F. Guinea and N. R. Walet, Electrostatic effects, band distor-
tions, and superconductivity in twisted graphene bilayers, Proc.
Natl. Acad. Sci. USA 115, 13174 (2018).

[46] N. Nakatsuji and M. Koshino, Moiré disorder effect in twisted
bilayer graphene, Phys. Rev. B 105, 245408 (2022).

[47] Z. Zhang, L. Wen, Y. Qiao, and Z. Li, Effects of strain on the
flat band in twisted bilayer graphene, Chin. Phys. B 32, 107302
(2023).

[48] J. H. Wong, B. R. Wu, and M. F. Lin, Strain effect on the
electronic properties of single layer and bilayer graphene,
J. Phys. Chem. C 116, 8271 (2012).

[49] G. Catarina, B. Amorim, E. V. Castro, J. Lopes, and N.
Peres, Twisted bilayer graphene: Low-energy physics, elec-
tronic and optical properties, in Handbook of Graphene, edited
by E. Celasco et al. (Wiley, Hoboken, NJ, 2019), Chap. 6,
pp. 177–231.

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/5v5w-8vtn for the tight-binding model and charge den-
sity of strained graphene, which includes Refs. [51,52].

[51] A. V. Rozhkov, A. Sboychakov, A. Rakhmanov, and F. Nori,
Electronic properties of graphene-based bilayer systems, Phys.
Rep. 648, 1 (2016).

[52] S. Das Sarma and E. H. Hwang, Collective modes of the mass-
less Dirac plasma, Phys. Rev. Lett. 102, 206412 (2009).

[53] M. Van der Donck, F. M. Peeters, and B. Van Duppen, Transport
properties of bilayer graphene in a strong in-plane magnetic
field, Phys. Rev. B 93, 115423 (2016).

064507-10

https://doi.org/10.1038/nature12187
https://doi.org/10.1103/PhysRevLett.108.216802
https://doi.org/10.1021/acsnano.5b07848
https://doi.org/10.1038/s41467-019-08518-1
https://doi.org/10.1038/s41586-023-06072-x
https://doi.org/10.1038/s41524-019-0191-2
https://doi.org/10.1038/nphys1420
https://doi.org/10.1126/science.1220335
https://doi.org/10.1038/ncomms1818
https://doi.org/10.1021/nl203359n
https://doi.org/10.1016/j.physrep.2015.12.006
https://doi.org/10.1038/s41586-020-2567-3
https://doi.org/10.1038/s41467-020-15023-3
https://doi.org/10.1002/inf2.12177
https://doi.org/10.1021/acs.nanolett.3c02513
https://doi.org/10.1038/nature26160
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1038/s41467-023-43365-1
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1103/PhysRevLett.119.107201
https://doi.org/10.1038/s41586-021-03192-0
https://doi.org/10.1098/rspa.2022.0833
https://doi.org/10.1016/j.eml.2022.101829
https://doi.org/10.1021/acs.nanolett.9b05108
https://doi.org/10.1038/s41565-019-0376-3
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevB.105.245408
https://doi.org/10.1088/1674-1056/acb2c1
https://doi.org/10.1021/jp300840k
http://link.aps.org/supplemental/10.1103/5v5w-8vtn
https://doi.org/10.1016/j.physrep.2016.07.003
https://doi.org/10.1103/PhysRevLett.102.206412
https://doi.org/10.1103/PhysRevB.93.115423


PHONON-MEDIATED SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 112, 064507 (2025)

[54] X. Chang, Y. Ge, and J. Dong, Ripples of AA and AB stacking
bilayer graphenes, Eur. Phys. J. B 78, 103 (2010).

[55] C. Androulidakis, E. Koukaras, M. P. Carbone, M.
Hadjinicolaou, and C. Galiotis, Wrinkling formation in
simply-supported graphenes under tension and compression
loadings, Nanoscale 9, 18180 (2017).

[56] W. McMillan, Transition temperature of strong-coupled super-
conductors, Phys. Rev. 167, 331 (1968).

[57] F. Wu, A. H. MacDonald, and I. Martin, Theory of phonon-
mediated superconductivity in twisted bilayer graphene, Phys.
Rev. Lett. 121, 257001 (2018).

[58] R. Ribeiro, V. M. Pereira, N. Peres, P. Briddon, and
A. C. Neto, Strained graphene: Tight-binding and den-
sity functional calculations, New J. Phys. 11, 115002
(2009).

[59] B. Roy, J. D. Sau, and S. Das Sarma, Migdal’s theorem and
electron-phonon vertex corrections in dirac materials, Phys.
Rev. B 89, 165119 (2014).
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