Optical Pulling and Pushing Forces in Bilayer \mathcal{PT}-Symmetric Structures

Rasoul Alaee,1,* Johan Christensen,2 and Muamer Kadic3

1Max Planck Institute for the Science of Light, Erlangen 91058, Germany
2Instituto Gregorio Millan Barbany, Universidad Carlos III de Madrid, ES-28916 Leganés, Madrid, Spain
3Institut FEMTO-ST, UMR 6174, CNRS, Université de Bourgogne Franche-Comté, 25000 Besançon, France

(Received 25 July 2017; revised manuscript received 16 October 2017; published 9 January 2018)

We investigate the optical force exerted on a parity-time-symmetric bilayer made of balanced gain and loss. We show that an asymmetric optical pulling or pushing force can be exerted on this system depending on the direction of impinging light. The optical pulling or pushing force has a direct physical link to the optical characteristics embedded in the non-Hermitian bilayer. Furthermore, we suggest taking advantage of the optically generated asymmetric force to launch vibrations of an arbitrary shape, which is useful for the contactless probing of mechanical deformations.

DOI: 10.1103/PhysRevApplied.9.014007

I. INTRODUCTION

In 1998, Bender and Boettcher introduced a parity-time (\mathcal{PT})-symmetric quantum mechanics as an extension of conventional quantum mechanics into the complex domain [1,2]. \mathcal{PT}-symmetric quantum mechanics was initially an interesting mathematical discovery [3], but it has since been studied in many areas of physics [4–14].

In principal, a quantum system with a non-Hermitian Hamiltonian is \mathcal{PT} symmetric if the Hamiltonian is invariant under combined parity inversion and time reversal. In optics, \mathcal{PT}-symmetric systems can be obtained with balanced gain and loss and should satisfy $n(r) = n^*(-r)$ [7]. In other words, the real part of the refractive index is an even function and the imaginary part of the refractive index an odd function of the space. Indeed, once gains and losses are introduced in the problem, the Hamiltonian of such systems becomes non-Hermitian. In general, the eigenvalues of such a system can be real or complex. For real eigenvalues, the \mathcal{PT} symmetry of the system is unbroken (i.e., the system is in a \mathcal{PT}-symmetric phase), whereas, for complex eigenvalues, the \mathcal{PT} symmetry of the system is broken (i.e., the system is in a broken \mathcal{PT}-symmetric phase). The concept of \mathcal{PT} symmetry has been used in numerous applications, such as extraordinary nonlinear behaviors [6], asymmetric propagation [8], unidirectional invisibility [9], optical lasing [11], optical switching [15], and many others. However, the physics of the optical force on \mathcal{PT}-symmetric systems has not yet been fully explored.

It is well known that a highly collimated light beam exerts a pushing force (i.e., in the direction of the flow of light) on an arbitrary object [16,17]. However, the direction of the exerted optical force can be changed by using impinging sources of various angles or using an object with different material properties (i.e., permittivity and permeability). For example, one can obtain a counterintuitive force known as the optical pulling force [18–26]. It has been shown that a pulling force can be achieved for particular beams, e.g., interference of multiple beams [20] or nonparaxial gradientless beams [21]. An alternative approach makes use of gain materials [18,19]. In all of these approaches, symmetric systems (invariant under space inversion) were investigated, and the system exhibited symmetric optical (pulling and pushing) forces as a result. Consequently, we raise the question as to whether one is able to engineer an asymmetric optical pulling or pushing force. In this paper, we address this question by exploring the optical force exerted on one-dimensional \mathcal{PT}-symmetric structures. We start by investigating a passive dielectric slab (made of lossy or lossless material, i.e., $n'' \geq 0$, where the refractive index is defined as $n = n' + i n''$). We show that the exerted optical force is positive, whereas, for an active slab (made of gain media, i.e., $n'' < 0$), the force sign can change depending on the thickness and the refractive index of the slab. Balancing gain and loss in the context of \mathcal{PT} symmetry provides an alternative route to unveil non-Hermitian optical forces in such a layered structure. To understand the underlying physics of optical pulling and pushing forces in \mathcal{PT}-symmetric structures, we calculate the eigenvalues and modulate the \mathcal{PT} phase-transition parameters. We find that the exerted force on a bilayer system changes from pushing to pulling at the \mathcal{PT} exceptional point. Finally, we explain how such a bilayer \mathcal{PT}-symmetric structure can be utilized to generate waves in thin elastic layers. Note that having
losses in metals and dielectrics are commonly used in the Lorentz model; gain is less obvious but mainly explored in the semiconductor field—and especially in quantum dots [27,28]. It is important to mention that designing a specific gain value is not a trivial step. However, several \(\mathcal{PT}\)-symmetric systems have been experimentally observed in optics [29–32].

II. THEORY

The system shown in Fig. 1(a) is a bilayer made of individual gain and loss layers fulfilling the \(\mathcal{PT}\)-symmetry condition \(n(r) = n^*(-r)\). The associated incoming \((a_1, a_2)\) and outgoing \((b_1, b_2)\) wave amplitudes are depicted in Fig. 1(a) and can be related by the transfer matrix

\[
\begin{pmatrix}
 b_2 \\
 a_2
\end{pmatrix} = M
\begin{pmatrix}
 a_1 \\
 b_1
\end{pmatrix} =
\begin{pmatrix}
 M_{11} & M_{12} \\
 M_{21} & M_{22}
\end{pmatrix}
\begin{pmatrix}
 a_1 \\
 b_1
\end{pmatrix},
\]

For a \(\mathcal{PT}\)-symmetric structure, the components of the \(M\) matrix should obey the following properties: \(M_{11} = M_{22}\) and \(\text{Re}[M_{12}] = \text{Re}[M_{21}] = 0\) [8].

From \(M\), the reflection and transmission coefficients can be obtained:

\[
t_L = \frac{\text{det}(M)}{M_{22}}, \quad t_R = \frac{1}{M_{12}}, \quad r_L = \frac{M_{12}}{M_{22}}, \quad \text{and} \quad r_R = -M_{21}/M_{22}. \]

It is important to mention that, for a reciprocal system, \(t = t_R = t_L\) and \(\text{det}(M) = 1\) [33]. Thus, the transfer \(M\) and scattering \(S\) matrices can be written as

\[
M = \begin{pmatrix}
\frac{1}{t^*} & \frac{r_R}{t} \\
\frac{-r_L}{t} & \frac{1}{t^*}
\end{pmatrix}, \quad S = \begin{pmatrix}
t & r_L \\
r_R & t
\end{pmatrix}. \tag{2}
\]

For a bilayer, the components of the transfer matrix read [34]

\[
M_{11} = (\bar{A} + D) e^{-2i k_0 d}, \quad M_{12} = \bar{C} + D, \quad M_{21} = C - D, \quad M_{22} = (\bar{A} - D) e^{2i k_0 d}, \tag{3}
\]

with \(\bar{A}, \bar{B}, \bar{C},\) and \(\bar{D}\) defined as

\[
\bar{A} = \frac{n_L^2 \cos \psi_{\pm} - n_r^2 \cos \psi_{\pm}}{n_L^2 - n_r^2}, \quad \bar{B} = \frac{n_{+} n_{+} \sin \psi_{\pm} + n_{-} n_{-} \sin \psi_{\pm}}{n_L^2 - n_r^2}, \quad \bar{C} = \frac{n_{-} n_{+} (\cos \psi_{\pm} - \cos \psi_{\pm})}{n_L^2 - n_r^2}, \quad \bar{D} = \frac{n_{-} n_{+} \sin \psi_{\pm} + n_{-} n_{+} \sin \psi_{\pm}}{n_L^2 - n_r^2}, \tag{4}
\]

where \(n_{\pm} = n_L \pm n_G, \quad \psi_{\pm} = n_{\pm} k_0 d, \quad \bar{n}_{\pm} = n_L n_G \pm 1,\) and \(n_L = n' + i n'' = n_{C}'\) is the refractive index of the loss layer.

For a \(\mathcal{PT}\)-symmetric system, it is easy to show that [35]

\[
|T - 1| = \sqrt{R_R R_L}. \tag{5}
\]

This relation is known as the generalized unitarity relation, where \(T = |t|^2\) is the transmittance, whereas \(R_R = |r_R|^2\) and \(R_L = |r_L|^2\) are the reflectances for impinging light from the right and the left, respectively.

The time-averaged optical force [36] exerted on a system contained in a closed surface \(S\) is given by

\[
F = \oint_S \langle \mathbf{T} \rangle \cdot \mathbf{n} dS, \tag{6}
\]

where \(S\) is a surface enclosing the slab, \(\mathbf{n}\) is normal to \(S\), and \(\mathbf{T}\) is the time-averaged Maxwell stress tensor that is defined as [36]

\[
\frac{1}{2} \text{Re} \left[\epsilon_0 \mathbf{E} \mathbf{E}^* + \mu_0 \mathbf{H} \mathbf{H}^* - \frac{1}{2} (\epsilon_0 \mathbf{E} \cdot \mathbf{E}^* + \mu_0 \mathbf{H} \cdot \mathbf{H}^*) \mathbf{I} \right], \tag{7}
\]

with \(\mathbf{E}\) and \(\mathbf{H}\) being the complex total electric and magnetic fields, and \(\mathbf{I}\) the identity matrix. Note that \(\mathbf{E} \cdot \mathbf{E}^*\) and \(\mathbf{EE}^*\)
are dot and tensor products, respectively. It can be shown (see the Appendix) that the optical force per unit surface area exerted on the slab by a linearly polarized plane wave at normal incidence propagating in the e_k direction is given by

\[F = \frac{I_0}{c} (1 + R - T)e_k. \]

(8)

It is important to note that this relation can also be understood from the change of linear momentum, where \((I_0/c)e_k\) is the incident momentum, \(-\langle I_0/c \rangle R e_k\) is the reflected momentum, and \((I_0/c)e_k T e_k\) is the transmitted momentum \([16,37]\). We begin by investigating the optical force generated by a linearly polarized plane wave on a slab made of either passive or gain media. For simplicity, we restrict ourselves to normal-incidence radiation.

In general, for a slab made of passive materials, i.e., $n'^{\prime} \geq 0$, the reflection, transmission, and absorption are non-negative. Therefore, by using Eq. (8) and $A = 1 - R - T$, $F = I_0/c(2R + A)$, we can conclude that the optical force should be non-negative, $F \geq 0$ [see Figs. 2(a), 2(b), and 2(c)]. The maximum optical force $F_{\text{max}} = 2I_0/c$ can be obtained for a perfect mirror, i.e., $R = 1$, which is twice the force exerted by a perfectly absorbing layer, i.e., $A = 1$. In Fig. 2(c), it can be seen that the force is converging to a positive value, i.e., $I_0/c(1 + R)$ ($T \approx 0$) for a very thick layer, i.e., $n'^{\prime}/\lambda \gg 1$. Interestingly, zero optical force can be achieved for a lossless slab ($n'^{\prime} = 0$) when the slab is transparent, i.e., $R = 0$, $T = 1$. This zero optical force occurs when $d = m\lambda/2n'$ [see Fig. 2(b)], where m is a positive integer.

For a slab made of gain material, the exerted force can be negative, i.e., pulling [see Figs. 2(a) and 2(d)]. The important aspect of this simple configuration is that the layer supports Fabry-Perot resonances and gives rise to multiple interesting points where the force changes sign as a function of the thickness or wavelength, i.e., d/λ. These resonances coincide with the resonances that are observed in the lossless case (these Fabry-Perot resonances occur at $d = m\lambda/2n'$). These results are similar to those reported in other studies [19,23].

We now assemble a bilayer made of a balanced gain and loss to study the \mathcal{PT}-symmetric case. We plot the force exerted on such a slab from different directions, as illustrated in Figs. 1(a) (from the left) and 1(b) (from the right). The solid line represents illumination coming in from the left (see Fig. 1), whereas the dashed line represents the case for right illumination. First, it can be clearly seen that the exerted forces are not symmetric for the two opposing irradiation directions (see Fig. 3). The asymmetric forces can be understood from the fact that the system is not invariant under space inversion \([38,39]\). We use the well-known \mathcal{PT} phase-transition parameters, i.e., n'^{\prime}/λ and n'^{\prime}/n^{\prime} \([35,40–42]\), to conduct a detailed study concerning their influence on the optical forces, transmission, and eigenvalues of the scattering matrix:

\[s_{1,2} = t \pm \sqrt{r_L r_R}. \]

(9)

Using $r_L r_R = t^2(1 - 1/T)$ \([35]\), the eigenvalues can be also written as

\[s_{1,2} = t(1 \pm \sqrt{1 - 1/T}). \]

(10)

Furthermore, we discuss how these quantities are interrelated with growing loss and gain and also the wavelength.
As computed in Fig. 4, we are able to trace the behavior of the computed optical forces acting on the \mathcal{PT}-symmetric bilayer according to their immediate phases.

A. Symmetric phase

The symmetric phase is characterized by unimodular eigenvalues $|s_{1,2}| = 1$, where the transmission remains $T < 1$, as seen in Figs. 4(a)–4(f). By using Eq. (5), the transmission can be obtained from $T = 1 - \sqrt{R_R R_L}$, and the forces are expressed as $F_{R,L} = (I_0/c)(R_{R,L} + \sqrt{R_R R_L})$. In the case of $R_R = R_L$, the forces will be identical for both directions, i.e., $F_R = F_L$. Most importantly, in this phase, the forces are pushing (being positive) for both illumination directions.

B. Exceptional point

The exceptional point occurs at unity transmission $T = 1$ and marks the onset of broken symmetry. Using Eq. (5), it can be easily seen that one of the reflectances vanishes. According to the optical mode profile at the exceptional point that leads to unidirectional reflection, light irradiating the lossy layer is perfectly absorbed, which gives rise to a one-way optical pushing force, i.e., $F_R = (I_0/c)R_R$ and $F_L = 0$; see Figs. 4(c) and 4(d). Here, we obtain an *optical-force rectifier*. An important question one might ask is, what is happening to the force when we approach the exceptional point? Can we get some practical instabilities and undesired effects? In fact, no. It is clear from Figs. 4(c) and 4(d) that the force modulus is continually changing from positive to negative value passing by zero. Thus, this change in the sign of the force is not a problem in practice, as this full region instead exhibits no force. Alternatively, by tuning the pump source of the gain media, we can expect oscillation and even use them in a smart way.

C. Broken-symmetry phase

The broken-symmetry phase is accompanied with larger-than-unity transmission $T > 1$. In this phase, we obtain coexisting amplifying $|s_1| > 1$ and attenuating $|s_2| < 1$ eigenvalues; see Figs. 4(e) and 4(f). Using Eqs. (5) and (8), the force is $F_{R,L} = (I_0/c)(R_{R,L} + \sqrt{R_R R_L})$. It is obvious that if $R_R = R_L$, the force is zero in both directions, i.e., $F_R = F_L = 0$. Interestingly, the coexistence of optical amplification and attenuation within the broken phase produces opposite pushing and pulling forces when illuminated from their respective directions, as we depict in Figs. 4(c) and 4(d).

Next we study the formation of the exceptional point by discussing whether its onset stems solely from optical properties or if it can be controlled by increasing the layering numbers. We discuss two cases: (a) a single bilayer ($N = 1$) and (b) a finite array with $N = 10$. Using the Chebyshev identity, the transfer matrix for N bilayers can be written

$$M_N = \begin{pmatrix} \frac{1}{T_N} & \frac{\sin(N\phi)}{T} \\ \frac{\cos(N\phi)}{T} & \frac{1}{T_N} \end{pmatrix},$$

(11)

where $\cos \phi = \text{Re}(1/t)$. The total transmission for N bilayers reads

$$\frac{1}{T_N} = 1 + \left(\frac{1}{T} - 1 \right) \frac{\sin^2(N\phi)}{\sin^2 \phi}.$$

(12)

For N bilayers, the eigenvalues of the scattering matrix are $s_{1,2}^N = t_N(1 \pm \sqrt{1 - 1/T_N})$, where t_N and $T_N = |t_N|^2$ are the transmission coefficient and the transmittance, respectively. It can be shown that the eigenvalues of N bilayers can be written as

$$s_{1,2}^N = t_N \left[1 \pm \sqrt{\left(1 - \frac{1}{T} \right) \frac{\sin^2(N\phi)}{\sin^2 \phi}} \right].$$

(13)

Therefore, the exceptional point of the N bilayers occurs when $T = 1$, which is identical to the exceptional point of
a single bilayer. We show the computation of the force as well as the eigenvalues of the scattering matrix in Fig. 5. We can clearly see that, for one or ten bilayers, the exceptional point is the same. We can then conclude that the exceptional point (EP) is a direct property of the bilayer alone, like the Hamiltonian for a closed system. It is then sufficient to look at a single bilayer’s EP in order to determine the symmetric and broken-symmetric phase region of any structure made of such bilayers.

Owing to the ability to push and pull a non-Hermitian object from the same side enables one to optically engineer mechanical deflections in bilayers almost entirely at will. By designing a bilayer with a specific thickness and the \mathcal{PT} phase-transition parameters, we propose a mechanical wave generator when different sections, as illustrated in Fig. 6(a), are illuminated at specific wavelengths to ensure the desired optomechanical response. Using a number of wavelength-specific lasers along the bilayer, under static illumination, one is able to preconstrain a large bilayer slab. In Figs. 6(b) and 6(c), we illustrate three specific examples of how one can generate preconstrained deformations on a thin plate. Once released, the preconstrained part generates a wave propagating parallel to the slab. If the slab is thin (compare to the wavelength), one can generate a flexural-like wave. This would be a contactless and quick way of setting the wave shape on a thin layer (see Fig. 6).

Optical dynamics being much faster than the mechanical one, we can almost consider the extent of the laser with the illuminated areas to be subject to a constant force. This force is controllable by the user and can be tuned at wish. Finding the equilibrium position of a plate clamped on the outer boundaries and under a stress field is then trivial from a numerical point of view. Obviously, we obtain the schematics of Fig. 6 under these considerations.

III. CONCLUSIONS

In conclusion, we have theoretically demonstrated that a highly collimated laser (a single plane wave) can exert an asymmetric pulling or pushing force on a \mathcal{PT}-symmetric...
optical layer. The physics of the optical pulling or pushing force is fully explained in the context of PT symmetry and the exceptional point. This mechanical behavior can be used to generate elastic waves in thin layers.

ACKNOWLEDGMENTS

We thank V. Laude, B. Gürlek, D.-M. Cano, Y. Achaoui, M. Wegener, and V. Sandoghdar for the constructive discussions and their suggestions. R. A. would like to acknowledge financial support from the Max Planck Society. J. C. acknowledges the support from the European Research Council (ERC) through Starting Grant No. 714577 PHONOMETA and from Ministerio de Economía, Industria y Competitividad (MINECO) through a Ramón y Cajal grant (Grant No. RYC-2015-17156). This project was performed in cooperation with the Labex ACTION program (Contract No. ANR-11-LABX-0001-01), and this work was supported by the French “Investissements d’Avenir” program, project ISITE-BFC (Contract No. ANR-15-IDEX-03).

APPENDIX: OPTICAL FORCES EXERTED ON A DIELECTRIC SLAB

In this appendix, we derive an expression for optical force exerted by a plane wave on a dielectric slab. Let us consider that the slab is illuminated by a linearly polarized plane wave propagating along the z axis at normal incidence, i.e., $E_x = E_0 e^{ikz} e_x$ (see Fig. 7). The reflected and transmitted electric fields can be written as

$$E_r = E_x e^{ikz} e_x, \quad E_t = E_x e^{ikz} e_x,$$

and the magnetic fields can be obtained as $H = (1/k Z_0) (\mathbf{k} \times \mathbf{E})$, where Z_0 is the impedance of the free space. The Maxwell stress tensor at $z > d/2$ can be calculated by using the total electric and magnetic fields, i.e., $\mathbf{E} = E_r e^{ikz} e_x, \quad \mathbf{H} = H_r e^{ikz} e_y$:

$$\langle \mathbf{T} \rangle_{z > d/2} = \frac{1}{2} \varepsilon_0 |E_r|^2 e_x e_x + \frac{1}{2} \mu_0 |H_r|^2 e_y e_y$$

$$- \frac{1}{4} \varepsilon_0 |E_r|^2 + \mu_0 |H_r|^2 e_x e_x e_z,$$ (A1)

Similarly, by using the total electric and magnetic fields at $z < -d/2$, i.e., $\mathbf{E} = (E_r e^{ikz} + E_x e^{-ikz}) e_x$, $\mathbf{H} = (H_r e^{ikz} - H_x e^{-ikz}) e_y$, the corresponding Maxwell stress tensor reads

$$\langle \mathbf{T} \rangle_{z < -d/2} = \frac{1}{2} \varepsilon_0 |E_r e^{ikz} + E_x e^{-ikz}|^2 e_x e_x$$

$$+ \frac{1}{2} \mu_0 |H_r e^{ikz} - H_x e^{-ikz}|^2 e_y e_y$$

$$- \frac{1}{4} \varepsilon_0 |E_r e^{ikz} + E_x e^{-ikz}|^2 e_x e_x e_z.$$ (A2)

Finally, the optical force derived by integrating the Maxwell stress tensor on a close surface S can be written as

$$\mathbf{F} = \int_{S} \langle \mathbf{T} \rangle \cdot d\mathbf{a},$$

$$= A_x (\langle \mathbf{T} \rangle_{z < -d/2} \cdot \mathbf{e}_z + \langle \mathbf{T} \rangle_{z > d/2} \cdot \mathbf{e}_z),$$

$$= \frac{1}{2} \varepsilon_0 A_x (|E_0|^2 + |E_x|^2 - |E_r|^2) \mathbf{e}_z,$$

$$= \frac{I_0}{c} A_x (|r|^2 - |t|^2) \mathbf{e}_z,$$ (A3)

where r and t are the reflection and transmission coefficients, respectively. $I_0 = \frac{1}{2} \varepsilon_0 |E_0|^2$ is the intensity of the incident plane wave, while A_x is the area. A similar expression for the optical force can be obtained by using the Lorentz force acting on both currents \mathbf{J} due to the polarization of the dielectric slab and the bound charges ρ_v at the boundaries, i.e.,

$$\mathbf{F} = \frac{1}{2} \text{Re} \left[\int_{V} (\rho_v \mathbf{E}^* + \mathbf{J} \times \mathbf{B}^*) dV \right].$$ (A4)

The derivation of the optical force exerted on the slab using the Lorentz force can be found in Refs. [16,37].

[40] Joseph Schindler, Ang Li, Mei C. Zheng, Fred M. Ellis, and Tsampikos Kottos, Experimental study of active LRC
circuits with \mathcal{PT} symmetries, Phys. Rev. A 84, 040101 (2011).

[43] Li Ge and Liang Feng, Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a \mathcal{PT}-symmetric periodic structure, Phys. Rev. A 95, 013813 (2017).
